77 resultados para Benzamide riboside


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-Deoxy-C-nucleosides are a subcategory of C-nucleosides that has not been explored extensively, largely because the synthesis is less facile. Flexible synthetic procedures giving access to 2-deoxy-C-nucleosides are therefore of interest. To exemplify the versatility and highlight the limitations of a synthetic route recently developed to that effect, the first synthesis of 2-deoxy benzamide riboside is reported. Biological properties of this novel C-nucleoside are also discussed. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New complexes of lanthanide nitrates with 2-N-(6-picolyl)-benzamide of the formulae Ln2[6-pic-BA], [NO3l6 (Ln = Y and La-Yb) have been prepared and characterised by chemical analysis, infrared, molar conductance and electronic spectral data. Molar conductance data along with IR data point to the presence of co-ordinated nitrate groups. IR spectra prove the bidentate co-ordination of the ligand to the metal ion, through the oxygen of the secondary amide and the nitrogen of the heterocyclic ring. Electronic spectral studies in the visible region suggest an eight co-ordinate geometry around the metal ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New complexes of lanthanide perchlorates with 2-N-(pyridyl) benzamide (PyBA) of the type Ln(PyBA)3(ClO4)3 where Ln = Y and La---Yb have been synthesised and characterised by analyses, conductance, IR, 13C NMR (for diamagnetic complexes only) and electronic spectra. The molar conductance and IR data point to the ionic nature of the perchlorate groups in the complexes. IR data along with the 13C NMR data unequivocally proves that the coordination of the ligand to the metal ions taken place in a bidentate fashion through the oxygen of the benzamide group and the nitrogen of the heterocyclic ring. From a comparison of the visible electronic spectral shapes of the Nd3+, Ho3+ and Er3+ complexes with those reported in the literature, a 6-coordinate geometry around the metal ion has been assigned in all the complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New complexes of lanthanide perchlorates with N-(2-pyrimidyl)benzamide (BApymH) of the general formulae [Ln(BApymH)4](ClO4)3 (where Ln = La-Yb and Y) have been synthesised and characterised by chemical analysis, molar conductivity and physical methods such as infrared and electronic spectra in the visible region. Molar conductance and infrared data point to the ionic nature of the per-chlorate groups in the complexes. IR data unequivocally proves that the coordination of the ligand to the metal ion takes place in a bidentate fashion through the oxygen of the secondary amide and nitrogen of the pyrimidine ring. From a comparison of the visible electronic spectral shapes of the Nd3+ and Ho3+ complexes with those reported in the literature, an eight coordinate geometry around the metal ion has tentatively been assigned in all the complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound, C13H9Cl2N, has an intramolecular C-H center dot center dot center dot O close contact, and presents the NH group syn to the meta-chloro group in the aniline ring and trans to the C=O group. The crystal packing is formed by infinite chains of N-H center dot center dot center dot O hydrogen bonds along the c axis. Cl center dot center dot center dot Cl [3.474 (1) angstrom] contacts link chains. The crystal used for data collection was a twin, the domains related by the twin law 0.948 (1)/0.052 (1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of concomitant polymorphism in 3-fluoro-N-(3-fluorophenyl) benzamide has been identified to be due to the disorder in the crystal structure. Of the two modifications, the plate form (Form I) crystallizes in the monoclinic centrosymmetric space group C2/c with Z = 4, and the needle form (Form II) crystallizes in the noncentrosymmetric space group P21 with Z = 2. An interesting positional disorder at the bridging atoms in both forms holds the molecular conformation identical, while subtle variations brought by N−H···O hydrogen bonds along with weak C−H···F and F···F interactions result in packing polymorphism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular connectivity index and comparative molecular field analysis (CoMFA) have been applied to the studies of the correlation of the derivatives of benzamide and their antiallergic activities. The results achieved by using CoMFA based on 3D factors are much better than that obtained by using multiple regression analysis based on majorly 2D structural information. The CoMFA results show that the dominant factor which affects activity is steric, whereas electrostatic effect only plays an unimportant role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the title compound, [CdCl2(C13H12N2O)(2)], the Cd-II ion is situated on an inversion centre, coordinated by two 0 atoms [Cd-O=2.3878 (17) angstrom] and two N atoms [Cd-N = 2.3404 (15) angstrom] from two N-(2-pyridylmethyl)benzamide ligands, and two Cl atoms [Cd-Cl = 2.5566 (6) angstrom], in a distorted octahedral geometry. In the crystal structure, intermolecular N-H center dot center dot center dot Cl hydrogen bonds [N center dot center dot center dot Cl = 3.1705 (18) angstrom] and pi-pi interactions, with a distance of 3.868 (3) angstrom between the centroids of the phenyl and pyridyl rings of neighbouring molecules, lead to the formation of two-dimensional layers parallel to the bc plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of a series of pyridine- and piperidine-substituted 1,2,3-triazolides linked to a riboside moiety is described. The presence of a triazolide substituent on the pyridine moiety permitted the facile reduction of the latter under mild hydrogenation conditions. These analogues were modelled as to define their similarity to nicotinamide riboside and quantify their ability to bind NAD-dependent protein deacetylases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Nicotinamide riboside (NR) is a recently discovered NAD+ precursor vitamin with a unique biosynthetic pathway. Although the presence of NR in cow milk has been known for more than a decade, the concentration of NR with respect to the other NAD+ precursors was unknown.

Objective: We aimed to determine NAD+ precursor vitamin concentration in raw samples of milk from individual cows and from commercially available cow milk.

Methods: LC tandem mass spectrometry and isotope dilution technologies were used to quantify NAD+ precursor vitamin concentration and to measure NR stability in raw and commercial milk. Nuclear magnetic resonance (NMR) spectroscopy was used to test for NR binding to substances in milk.

Results: Cow milk typically contained ∼12 μmol NAD+ precursor vitamins/L, of which 60% was present as nicotinamide and 40% was present as NR. Nicotinic acid and other NAD+ metabolites were below the limits of detection. Milk from samples testing positive for Staphylococcus aureus contained lower concentrations of NR (Spearman ρ = −0.58, P = 0.014), and NR was degraded by S. aureus. Conventional milk contained more NR than milk sold as organic. Nonetheless, NR was stable in organic milk and exhibited an NMR spectrum consistent with association with a protein fraction in skim milk.

Conclusions: NR is a major NAD+ precursor vitamin in cow milk. Control of S. aureus may be important to preserve the NAD+ precursor vitamin concentration of milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and DFT theoretical calculations were used to study benzamide. The TG-DTA and DSC curves provided information concerning the melting point, evaporation and thermal stability of the compound. Using the FTIR technique it was possible to confirm the evaporation of the compound with no degradation. Density functional theory (DFT) at the 6-311++G (3df, 3dp) level, provided information regarding the energies involved in HOMO-LUMO transitions and the chemical stability of the compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work focused on the synthesis of novel monomers for the design of a series of oligo(p-benzamide)s following two approaches: iterative solution synthesis and automated solid phase protocols. These approaches present a useful method to the sequence-controlled synthesis of side-chain and main-chain functionalized oligomers for the preparation of an immense variety of nanoscaffolds. The challenge in the synthesis of such materials was their modification, while maintaining the characteristic properties (physical-chemical properties, shape persistence and anisotropy). The strategy for the preparation of predictable superstructures was devote to the selective control of noncovalent interactions, monodispersity and monomer sequence. In addition to this, the structure-properties correlation of the prepared rod-like soluble materials was pointed. The first approach involved the solution-based aramide synthesis via introduction of 2,4-dimethoxybenzyl N-amide protective group via an iterative synthetic strategy The second approach focused on the implementation of the salicylic acid scaffold to introduce substituents on the aromatic backbone for the stabilization of the OPBA-rotamers. The prepared oligomers were analyzed regarding their solubility and aggregation properties by systematically changing the degree of rotational freedom of the amide bonds, side chain polarity, monomer sequence and degree of oligomerization. The syntheses were performed on a modified commercial peptide synthesizer using a combination of fluorenylmethoxycarbonyl (Fmoc) and aramide chemistry. The automated synthesis allowed the preparation of aramides with potential applications as nanoscaffolds in supramolecular chemistry, e.g. comb-like-