936 resultados para Bentonite sand
Resumo:
As a seepage barrier slurry trench material should have a relatively low coefficient of permeability, in the range of 10(-7) cm/s, and at the same time should be compatible with surrounding material with regard to compressibility. Although bentonite-sand/soil mixes are used widely, there is no specific engineering approach to proportion these mixes that satisfies the above practical requirements. In this paper, a generalized approach is presented for predicting the permeability and compressibility characteristics of mixes with minimum input parameters. This approach will be helpful in proportioning mixes and predicting corresponding changes in engineering behavior. It is possible to proportion a mix to arrive at the required compressibility without affecting the permeability. This is explained using an illustrative example.
Resumo:
Compacted clay liners are widely used for waste contaminant facilities because of their low cost, large leachate attenuation capacity and resistance to damage and puncture. Commonly used bentonite possess many limitations such as high swelling and shrinkage potential, sensitivity to waste fluid characteristics etc. The paper proposes the use of bentonite-sand mixture containing optimal clay content as liner material. It has been brought out, based on detailed geotechnical investigations, that a mixture containing only about 20 to 39% of bentonite is more suited than the clay alone and they possess.
Resumo:
Owing to its favourable physical, chemical and rheological properties, densely compacted bentonite or bentonite-sand mix is considered as a suitable buffer material in deep geological repositories to store high level nuclear waste. Iodine-129 is one of the significant nuclides in the high level waste owing to its long half life and poor sorption onto most geologic media. Bentonite by virtue of negatively charged surface has negligible affinity to retain iodide ions. As organo-bentonites are known to retain iodide ions, the present study characterizes hexadecylpyridinium chloride (HDPyCl.H2O) treated bentonite from Barmer India (referred as HDPy+B) for physico-chemical properties, engineering properties and the iodide adsorption behavior of the organo clay. Batch experiments revealed that HDPy+ ions are largely retained (94 % retention) via cation exchange; the ion-exchange process neutralizes the negative surface charge and bridges clay particles leading to reduction in Atterberg limits, clay content and sediment volume. The organo clay retains iodide by Coulombic attraction (at primary sites) and anion exchange (at secondary sites). The free-energy change (Delta G (o) = -25.5 kJ/mol) value indicated that iodide retention by organo clay is favored physical adsorption process. Iodide adsorption capacity of organo clay decreased significantly (85-100 %) on dilution with 50-80 % bentonite. On the other hand, dilution of bentonite with 50 % organo clay caused 58 % reduction in swell potential and 21 % reduction in swell pressure.
Influence of initial degree of saturation on swell pressures of compacted Barmer bentonite specimens
Resumo:
Densely compacted bentonite or bentonite-sand mixture has been identified as suitable buffer in deep geological repositories as its exceptionally high swelling capacity enables tight contact between the waste canister and surrounding rock. The degree of saturation of the compacted bentonite buffer can increase upon ingress of groundwater from the surrounding rock mass or decrease from evaporation due to high temperature (50-210 degrees C) derived from the waste canister. Available studies indicate that the influence of initial moisture content or degree of saturation on the swell pressure or swell potential of compacted bentonites is unclear. Some studies suggest that initial degree of saturation has an influence, while others suggest that it does not have bearing on the swell pressure of compacted bentonites. This paper examines the influence of initial degree of saturation in montmorillonite voids (termed,S-r,S-MF) on swell pressure of compacted Barmer bentonite-sand mixtures (dry density range: 1.4-2 Mg/m(3)) from micro-structural considerations. The experimental results bring out that, constant dry density specimens that developed similar number of hydration layers upon wetting developed comparable swell pressures and were unaffected by variations in initial S-r,S-MF values. Comparatively, constant dry density specimens that developed dis-similar number of hydration layers upon wetting established different swell pressures and were responsive to variations in initial S-r,S-MF. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The present study examines the geotechnical properties of Indian bentonite clays for their suitability as buffer material in deep geological repository for high-level nuclear wastes. The bentonite samples are characterized for index properties, compaction, hydraulic conductivity and swelling characteristics. Evaluation of geotechnical properties of the compacted bentonite-sand admixtures, from parts of NW India reveals swelling potentials and hydraulic conductivities in the range of 55 % - 108 % and 1.2 X 10 –10 cm/s to 5.42x 10 –11 cm/s respectively. Strong correlation was observed between ESP (exchangeable sodium percentage) and liquid limit/swell potential of tested specimens. Relatively less well-defined trends emerged between ESP and swell pressure/hydraulic conductivity. The Barmer-1 bentonite despite possessing relatively lower montmorillonite content of 68 %, developed higher Atterberg limit and swell potential, and exhibited comparable swelling pressure and hydraulic conductivity as other bentonites with higher montmorillonite contents (82 to 86 %). The desirable geotechnical properties of Barmer clay as a buffer material is attributed to its large ESP (63 %) and, EMDD (1.17 Mg/m3) attained at the experimental compactive stress(5 MPa).
Resumo:
The present study aimed at critically looking at the current practice of the installation of compacted clay liner using bentonite enhanced sand (BES). The application of bentonite is currently the most accepted practice for lining purposes. The ideal bentonite sand combination, which satisfies the liner requirements is 20% bentonite and 80% sand, was selected as one of the liner materials for the investigation of development of desiccation cracks. Locally available sundried marine clay and its combination with bentonite were also included in the study. The desiccation tests on liner materials were conducted for wet/dry cycles to simulate the seasonal variations. Digital image processing techniques were used to measure the crack intensity factor (CIF), a useful and effective parameter for quantification of desiccation cracking. The repeatability of the tests could be well established, as the variation in CIF values of identical samples had a very narrow range of 0 to 2%. The studies on the development of desiccation cracks showed that the CIF of bentonite enhanced sand mixture (BES) was 18.09%, 39.75% and 21.22% for the first, second and third cycles respectively, while it was only 9.83%, 7.52% and 4.58% respectively for sun dried marine clay (SMC). Thus the locally available, alternate liner material suggested, viz SMC, is far superior to BES, when subjected to alternate wet/dry cycles. Further, the improvement of these liner materials when amended with randomly distributed fibre reinforcements was also investigated. Three types of fibres ,namely nylon fibre, polypropylene monofilament and polypropylene fibre mesh were used for the study of fibre amended BES and SMC.The influence of these amendments on the properties of the above liner materials is also studied. The results showed that there is definite improvement in the properties of the liner materials when it is reinforced with discrete random fibres. The study also proved that the desiccation cracks could be controlled with the help of fibre reinforcement.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the Arctic the currently observed rising air temperature results in more frequent calving of icebergs. The latter are derived from tidewater glaciers. Arctic macrozoobenthic soft-sediment communities are considerably disturbed by direct hits and sediment reallocation caused by iceberg scouring. With the aim to describe the primary succession of macrozoobenthic communities following these events, scientific divers installed 28 terracotta containers in the soft-sediment off Brandal (Kongsfjorden, Svalbard, Norway) at 20 m water depth in 2002. The containers were filled with a bentonite-sand-mixture resembling the natural sediment. Samples were taken annually between 2003 and 2007. A shift from pioneering species (e.g. Cumacea: Lamprops fuscatus) towards more specialized taxa, as well as from surface-detritivores towards subsurface-detritivores was observed. This is typical for an ecological succession following the facilitation and inhibition succession model. Similarity between experimental and non-manipulated communities from 2003 was significantly highest after three years of succession. In the following years similarity decreased, probably due to elevated temperatures, which prevented the fjord-system from freezing. Some organisms numerically important in the non-manipulated community (e.g., the polychaete Dipolydora quadrilobata) did not colonies the substrate during the experiment. This suggests that the community had not fully matured within the first three years. Later, the settlement was probably impeded by consequences of warming temperatures. This demonstrates the long-lasting effects of severe disturbances on Arctic macrozoobenthic communities. Furthermore, environmental changes, such as rising temperatures coupled with enhanced food availability due to an increasing frequency of ice-free days per year, may have a stronger effect on succession than exposure time.
Resumo:
Earlier studies have indicated that variability in size, surface texture and charge greatly influence the contaminant removal process in granular media. Based on surface characteristics of montmorillonite, it is anticipated that small addition of this clay would increase adhesion sites for bacterial growth and extracellular polymer production in the slow sand filter and thereby enhance its contaminant removal ability. Experiments were performed by permeating groundwater contaminated with pathogens (total coliform and E. Coli) and inorganic contaminants through the bentonite amended slow sand filter (BASSF). Surprisingly, the BASSF retained inorganic contaminants besides pathogens. Water-leach tests (pH of water leachate ranged from 2 to 9) with spent BASSF specimen indicated that the inorganic contaminants are irreversibly adsorbed to a large extent. It is considered that the combined effects of enhanced-organic matter mediated adhesion sites and increased hydraulic retention time enables the BASSF specimen to retain inorganic contaminants. It is envisaged that BASSF filters could find use in treating contaminated groundwater for potable needs at household and community level.
Resumo:
Increasing nitrate concentrations in ground water is deleterious to human health as ingestion of such water can cause methemoglobinemia in infants and even cancer in adults (desirable limit for nitrate as NO3 - 45 mg/L, IS code 10500-1991). Excess nitrate concentrations in ground water is contributed by reason being disposal of sewage and excessive use of fertilizers. Though numerous technologies such as reverse osmosis, ion exchange, electro-dialysis, permeable reactive barriers using zerovalent iron etc exists, nitrate removal continues to be one of challenging issue as nitrate ion is highly mobile within the soil strata. The tapping the denitrification potential of soil denitrifiers which are inherently available in the soil matrix is the most sustainable approach to mitigate accumulation of nitrate in ground water. The insitu denitrification of sand and bentonite enhanced sand (bentonite content = 5%) in presence of easily assimilable organic carbon such as ethanol was studied. Batch studies showed that nitrate reduction by sand follows first order kinetics with a rate constant 5.3x10(-2) hr(-1) and rate constant 4.3 x 10(-2) hr(-1) was obtained for bentonite-enhanced sand (BS) at 25 degrees C. Filter columns (height = 5 cm and diameter = 8.2 cm) were constructed using sand and bentonite-enhanced sand as filter media. The filtration rate through both the filter columns was maintained at average value of 2.60 cm/h. The nitrate removal rates through both the filter media was assessed for solution containing 22.6 mg NO3-N/L concentrations while keeping C/N mass ratio as 3. For sand filter column, the nitrate removal efficiency reached the average value of 97.6% after passing 50 pore volumes of the nitrate solution. For bentonite-enhanced sand filter column, the average nitrate removal efficiency was 83.5%. The time required for effective operation for sand filter bed was 100 hours, while bentonite-enhanced sand filter bed did not require any maturation period as that of sand filter bed for effective performance because the presence of micropores in bentonite increases the hydraulic retention time of the solution inside the filter bed.
Resumo:
Comprehensive understanding of the long-term performance of cement-bentonite slurry trench cut-off walls is essential as these mixes may degrade when exposed to aggressive environments or when subjected to prolonged drying. A series of wetting-drying and immersion experiments was carried out to evaluate the durability characteristics of laboratory mixed samples and block field samples from 40 days to 11 years of age. For the wetting-drying tests, the samples buried in medium graded sand were subjected to periodical flooding and drying cycles. They were then used for permeability testing and unconfined compressive strength (UCS) testing. For the immersion tests, the samples confined in perforated molds were submerged in magnesium sulfate solution for 16 weeks and their microstructures were then analyzed using X-ray diffraction (XRD) technique. This paper identifies the effects of contaminant exposure on durability of cement-bentonite and the effects of aging by comparing 11 years old samples to younger samples. Test results showed that young or previously contaminated cement-bentonite mixes are more susceptible to sulfate attack than old or less contaminated mixes. Copyright ASCE 2008.
Resumo:
The effect of zeolite amendment for enhanced sorption capacity on the consolidation behavior and hydraulic conductivity, k, of a typical soil-bentonite (SB) backfill for vertical cutoff walls was evaluated via laboratory testing. The consolidation behavior and k of test specimens containing fine sand, 5.8 % (dry wt.) sodium bentonite, and 0, 2, 5, or 10 % (dry wt.) of one of three types of zeolite (clinoptilolite, chabazite-lower bed, or chabazite-upper bed) were measured using fixed-ring oedometers, and k also was measured on separate specimens using a flexible-wall permeameter. The results indicated that addition of a zeolite had little impact on either the consolidation behavior or the k of the backfill, regardless of the amount or type of zeolite. For example, the compression index, Cc, for the unamended backfill specimen was 0.24, whereas values of Cc for the zeolite amended specimens were in the range 0.19 ≤ Cc ≤ 0.23. Similarly, the k for the unamended specimen based on flexible-wall tests was 2.4 x 10-10 m/s, whereas values of k for zeolite amended specimens were in the range 1.2 x 10-10 ≤ k ≤ 3.9 x 10-10 m/s. The results of the study suggest that enhancing the sorption capacity of typical SB backfills via zeolite amendment is not likely to have a significant effect on the consolidation behavior or k of the backfill, provided that the amount of zeolite added is small (≤ 10 %).
Resumo:
The potential for changes in hydraulic conductivity, k, of two model soil-bentonite (SB) backfills subjected to wet-dry cycling was investigated. The backfills were prepared with the same base soil (clean, fine sand) but different bentonite contents (2.7 and 5.6 dry wt %). Saturation (S), volume change, and k of consolidated backfill specimens (effective stress = 24 kPa) were evaluated over three to seven cycles in which the matric suction, Ym, in the drying stage ranged from 50 to 700 kPa. Both backfills exhibited susceptibility to degradation in k caused by wet-dry cycling. Mean values of k for specimens dried at Ym = 50 kPa (S = 30-60 % after drying) remained low after two cycles, but increased by 5- to 300-fold after three or more cycles. Specimens dried at Ym ≥ 150 kPa (S < 30 % after drying) were less resilient and exhibited 500- to 10 000-fold increases in k after three or more cycles. The greater increases in k for these specimens correlated with greater vertical shrinkage upon drying. The findings suggest that increases in hydraulic conductivity due to wet-dry cycling may be a concern for SB vertical barriers located within the zone of a fluctuating groundwater table.
Resumo:
The objective of this study was to evaluate the chemical compatibility of model soil-bentonite backfills containing multiswellable bentonite (MSB) relative to that of similar backfills containing untreated sodium (Na) bentonite or a commercially available, contaminant resistant bentonite (SW101). Flexible-wall tests were conducted on consolidated backfill specimens (effective stress =34.5 kPa) containing clean sand and 4.5–5.7% bentonite (by dry weight) using tap water and calcium chloride (CaCl2) solutions (10–1,000 mM) as the permeant liquids. Final values of hydraulic conductivity (k) and intrinsic permeability (K) to the CaCl2 solutions were determined after achieving both short-term termination criteria as defined by ASTM D5084 and long-term termination criteria for chemical equilibrium between the influent and effluent. Specimens containing MSB exhibited the smallest increases in k and K upon permeation with a given CaCl2 solution relative to specimens containing untreated Na bentonite or SW101. However, none of the specimens exhibited more than a five-fold increase in k or K, regardless of CaCl2 concentration or bentonite type. Final k values for specimens permeated with a given CaCl2 solution after permeation with tap water were similar to those for specimens of the same backfill permeated with only the CaCl2 solution, indicating that the order of permeation had no significant effect on k. Also, final k values for all specimens were within a factor of two of the k measured after achieving the ASTM D5084 termination criteria. Thus, use of only the ASTM D5084 criteria would have been sufficient to obtain reasonable estimates of long-term hydraulic conductivity for the specimens in this study.
Resumo:
This study investigated the effect of cyclic wetting and drying on the backfill used in soil-bentonite (SB) cutoff walls. For this purpose, model SB vertical cutoff wall backfills were prepared comprising of a fine grained mortar sand and 2% bentonite (by total weight) and 4% bentonite (by total weight). Results of the study indicate that the volume change is influenced by the bentonite content, that is, the increase in volume change increased with increasing bentonite content.