999 resultados para Bell Measurement
Resumo:
We investigate the problem of teleporting an unknown qubit state to a recipient via a channel of 2L qubits. In this procedure a protocol is employed whereby L Bell state measurements are made and information based on these measurements is sent via a classical channel to the recipient. Upon receiving this information the recipient determines a local gate which is used to recover the original state. We find that the 2(2L)-dimensional Hilbert space of states available for the channel admits a decomposition into four subspaces. Every state within a given subspace is a perfect channel, and each sequence of Bell measurements projects 2L qubits of the system into one of the four subspaces. As a result, only two bits of classical information need be sent to the recipient for them to determine the gate. We note some connections between these four subspaces and ground states of many-body Hamiltonian systems, and discuss the implications of these results towards understanding entanglement in multi-qubit systems.
Resumo:
Magnetic resonance imaging (MRI) offers the opportunity to study biological tissues and processes in a non-disruptive manner. The technique shows promise for the study of the load-bearing performance (consolidation) of articular cartilage and changes in articular cartilage accompanying osteoarthritis. Consolidation of articular cartilage involves the recording of two transient characteristics: the change over time of strain and the hydrostatic excess pore pressure (HEPP). MRI study of cartilage consolidation under mechanical load is limited by difficulties in measuring the HEPP in the presence of the strong magnetic fields associated with the MRI technique. Here we describe the use of MRI to image and characterize bovine articular cartilage deforming under load in an MRI compatible consolidometer while monitoring pressure with a Fabry-Perot interferometer-based fiber-optic pressure transducer.
Resumo:
We propose a molecular mechanism for the intra-cellular measurement of the ratio of the number of X chromosomes to the number of sets of autosomes, a process central to both sex determination and dosage compensation in Drosophila melanogaster. In addition to the two loci, da and Sxl, which have been shown by Cline (Genetics, 90, 683, 1978)and others to be involved in these processes, we postulate two other loci, one autosomal (ω) and the other, X-linked (π). The product of the autosomal locus da stimulates ω and initiates synthesis of a limited quantity of repressor. Sxl and π ,both of which are X-linked, compete for this repressor as well as for RNA polymerase. It is assumed that Sxl has lower affinity than π for repressor as well as polymerase and that the binding of polymerase to one of these sites modulates the binding affinity of the other site for the enzyme. It can be shown that as a result of these postulated interactions transcription from the Sxl site is proportional to the X/A ratio such that the levels of Sxl+ product are low in males, high in females and intermediate in the intersexes. If, as proposed by Cline, the Sxl- product is an inhibitor of X chromosome activity, this would result in dosage compensation. The model leads to the conclusion that high levels of Sxl+ product promote a female phenotype and low levels, a male phenotype. One interesting consequence of the assumptions on which the model is based is that the level of Sxl+ product in the cell, when examined as a function of increasing repressor concentration, first goes up and then decreases, yielding a bell-shaped curve. This feature of the model provides an explanation for some of the remarkable interactions among mutants at the Sxl, da and mle loci and leads to several predictions. The proposed mechanism may also have relevance to certain other problems, such as size regulation during development, which seem to involve measurement of ratios at the cellular level.
Resumo:
Discrimination of Bell states plays an important role in a number of quantum computational protocols such as teleportation and secret sharing. However, most of the protocols dealing with Bell state discrimination in the literature either involve performing correlated measurements or destroying the entanglement of the system. Here, we demonstrate an NMR-based experimental realization of a protocol for Bell state discrimination, following a scheme proposed by Gupta et al (quant-ph/0504183v1, 23 April 2005), which does not destroy the Bell state under consideration. Using the proposed protocol, one can deterministically distinguish the Bell states, without performing a measurement using the entangled basis. State discrimination is performed through two independent measurements on one ancilla qubit, which leaves the Bell states unchanged.
Resumo:
For the purpose of a nonlocality test, we propose a general correlation observable of two parties by utilizing local d- outcome measurements with SU(d) transformations and classical communications. Generic symmetries of the SU(d) transformations and correlation observables are found for the test of nonlocality. It is shown that these symmetries dramatically reduce the number of numerical variables, which is important for numerical analysis of nonlocality. A linear combination of the correlation observables, which is reduced to the Clauser- Home-Shimony-Holt (CHSH) Bell's inequality for two outcome measurements, leads to the Collins-Gisin-Linden-Massar-Popescu (CGLMP) nonlocality test for d-outcome measurement. As a system to be tested for its nonlocality, we investigate a continuous- variable (CV) entangled state with d measurement outcomes. It allows the comparison of nonlocality based on different numbers of measurement outcomes on one physical system. In our example of the CV state, we find that a pure entangled state of any degree violates Bell's inequality for d(greater than or equal to2) measurement outcomes when the observables are of SU(d) transformations.
Resumo:
Joint quantum measurements of noncommuting observables are possible, if one accepts an increase in the measured variances. A necessary condition for a joint measurement to be possible is that a joint probability distribution exists for the measurement. This fact suggests that there may be a link with Bell inequalities, as these will be satisfied if and only if a joint probability distribution for all involved observables exists. We investigate the connections between Bell inequalities and conditions for joint quantum measurements to be possible. Mermin's inequality for the three-particle Greenberger-Horne-Zeilinger state turns out to be equivalent to the condition for a joint measurement on two out of the three quantum systems to exist. Gisin's Bell inequality for three coplanar measurement directions, meanwhile, is shown to be less strict than the condition for the corresponding joint measurement.
Resumo:
We explore the challenges posed by the violation of Bell-like inequalities by d-dimensional systems exposed to imperfect state-preparation and measurement settings. We address, in particular, the limit of high-dimensional systems, naturally arising when exploring the quantum-to-classical transition. We show that, although suitable Bell inequalities can be violated, in principle, for any dimension of given subsystems, it is in practice increasingly challenging to detect such violations, even if the system is prepared in a maximally entangled state. We characterize the effects of random perturbations on the state or on the measurement settings, also quantifying the efforts needed to certify the possible violations in case of complete ignorance on the system state at hand.
Resumo:
. The influence of vine water status was studied in commercial vineyard blocks of Vilis vinifera L. cv. Cabernet Franc in Niagara Peninsula, Ontario from 2005 to 2007. Vine performance, fruit composition and vine size of non-irrigated grapevines were compared within ten vineyard blocks containing different soil and vine water status. Results showed that within each vineyard block water status zones could be identified on GIS-generated maps using leaf water potential and soil moisture measurements. Some yield and fruit composition variables correlated with the intensity of vine water status. Chemical and descriptive sensory analysis was performed on nine (2005) and eight (2006) pairs of experimental wines to illustrate differences between wines made from high and low water status winegrapes at each vineyard block. Twelve trained judges evaluated six aroma and flavor (red fruit, black cherry, black current, black pepper, bell pepper, and green bean), thr~e mouthfeel (astringency, bitterness and acidity) sensory attributes as well as color intensity. Each pair of high and low water status wine was compared using t-test. In 2005, low water status (L WS) wines from Buis, Harbour Estate, Henry of Pelham (HOP), and Vieni had higher color intensity; those form Chateau des Charmes (CDC) had high black cherry flavor; those at RiefEstates were high in red fruit flavor and at those from George site was high in red fruit aroma. In 2006, low water status (L WS) wines from George, Cave Spring and Morrison sites were high in color intensity. L WS wines from CDC, George and Morrison were more intense in black cherry aroma; LWS wines from Hernder site were high in red fruit aroma and flavor. No significant differences were found from one year to the next between the wines produced from the same vineyard, indicating that the attributes of these wines were maintained almost constant despite markedly different conditions in 2005 and 2006 vintages. Partial ii Least Square (PLS) analysis showed that leaf \}' was associated with red fruit aroma and flavor, berry and wine color intensity, total phenols, Brix and anthocyanins while soil moisture was explained with acidity, green bean aroma and flavor as well as bell pepper aroma and flavor. In another study chemical and descriptive sensory analysis was conducted on nine (2005) and eight (2006) medium water status (MWS) experimental wines to illustrate differences that might support the sub-appellation system in Niagara. The judges evaluated the same aroma, flavor, and mouthfeel sensory attributes as well as color intensity. Data were analyzed using analysis of variance (ANOVA), principal component analysis (PCA) and discriminate analysis (DA). ANOV A of sensory data showed regional differences for all sensory attributes. In 2005, wines from CDC, HOP, and Hemder sites showed highest. r ed fruit aroma and flavor. Lakeshore and Niagara River sites (Harbour, Reif, George, and Buis) wines showed higher bell pepper and green bean aroma and flavor due to proximity to the large bodies of water and less heat unit accumulation. In 2006, all sensory attributes except black pepper aroma were different. PCA revealed that wines from HOP and CDC sites were higher in red fruit, black currant and black cherry aroma and flavor as well as black pepper flavor, while wines from Hemder, Morrison and George sites were high in green bean aroma and flavor. ANOV A of chemical data in 2005 indicated that hue, color intensity, and titratable acidity (TA) were different across the sites, while in 2006, hue, color intensity and ethanol were different across the sites. These data indicate that there is the likelihood of substantial chemical and sensory differences between clusters of sub-appellations within the Niagara Peninsula iii
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)