999 resultados para Bayesian nonparametric


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Joint analysis of multiple data sources is becoming increasingly popular in transfer learning, multi-task learning and cross-domain data mining. One promising approach to model the data jointly is through learning the shared and individual factor subspaces. However, performance of this approach depends on the subspace dimensionalities and the level of sharing needs to be specified a priori. To this end, we propose a nonparametric joint factor analysis framework for modeling multiple related data sources. Our model utilizes the hierarchical beta process as a nonparametric prior to automatically infer the number of shared and individual factors. For posterior inference, we provide a Gibbs sampling scheme using auxiliary variables. The effectiveness of the proposed framework is validated through its application on two real world problems - transfer learning in text and image retrieval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel framework for large-scale scene understanding in static camera surveillance. Our techniques combine fast rank-1 constrained robust PCA to compute the foreground, with non-parametric Bayesian models for inference. Clusters are extracted in foreground patterns using a joint multinomial+Gaussian Dirichlet process model (DPM). Since the multinomial distribution is normalized, the Gaussian mixture distinguishes between similar spatial patterns but different activity levels (eg. car vs bike). We propose a modification of the decayed MCMC technique for incremental inference, providing the ability to discover theoretically unlimited patterns in unbounded video streams. A promising by-product of our framework is online, abnormal activity detection. A benchmark video and two surveillance videos, with the longest being 140 hours long are used in our experiments. The patterns discovered are as informative as existing scene understanding algorithms. However, unlike existing work, we achieve near real-time execution and encouraging performance in abnormal activity detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social capital indicative of community interaction and support is intrinsically linked to mental health. Increasing online presence is now the norm. Whilst social capital and its impact on social networks has been examined, its underlying connection to emotional response such as mood, has not been investigated. This paper studies this phenomena, revisiting the concept of “online social capital†in social media communities using measurable aspects of social participation and social support. We establish the link between online capital derived from social media and mood, demonstrating results for different cohorts of social capital and social connectivity. We use novel Bayesian nonparametric factor analysis to extract the shared and individual factors in mood transition across groups of users of different levels of connectivity, quantifying patterns and degree of mood transitions. Using more than 1.6 million users from Live Journal, we show quantitatively that groups with lower social capital have fewer positive moods and more negative moods, than groups with higher social capital. We show similar effects in mood transitions. We establish a framework of how social media can be used as a barometer for mood. The significance lies in the importance of online social capital to mental well-being in overall. In establishing the link between mood and social capital in online communities, this work may suggest the foundation of new systems to monitor online mental well-being.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-task learning is a paradigm shown to improve the performance of related tasks through their joint learning. However, for real-world data, it is usually difficult to assess the task relatedness and joint learning with unrelated tasks may lead to serious performance degradations. To this end, we propose a framework that groups the tasks based on their relatedness in a subspace and allows a varying degree of relatedness among tasks by sharing the subspace bases across the groups. This provides the flexibility of no sharing when two sets of tasks are unrelated and partial/total sharing when the tasks are related. Importantly, the number of task-groups and the subspace dimensionality are automatically inferred from the data. To realize our framework, we introduce a novel Bayesian nonparametric prior that extends the traditional hierarchical beta process prior using a Dirichlet process to permit potentially infinite number of child beta processes. We apply our model for multi-task regression and classification applications. Experimental results using several synthetic and real datasets show the superiority of our model to other recent multi-task learning methods. Copyright 2013 by the author(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Scale features are useful for a great number of applications in computer vision. However, it is difficult to tolerate diversities of features in natural scenes by parametric methods. Empirical studies show that object frequencies and segment sizes follow the power law distributions which are well generated by Pitman-Yor (PY) processes. Based on mid-level segments, we propose a hierarchical sequence of images to obtain scale information stored in a hierarchical structure through the hierarchical Pitman-Yor (HPY) model which is expected to tolerate uncertainty of natural images. We also evaluate our representation by the application of segmentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring daily physical activity of human plays an important role in preventing diseases as well as improving health. In this paper, we demonstrate a framework for monitoring the physical activity levels in daily life. We collect the data using accelerometer sensors in a realistic setting without any supervision. The ground truth of activities is provided by the participants themselves using an experience sampling application running on mobile phones. The original data is discretized by the hierarchical Dirichlet process (HDP) into different activity levels and the number of levels is inferred automatically. We validate the accuracy of the extracted patterns by using them for the multi-label classification of activities and demonstrate the high performances in various standard evaluation metrics. We further show that the extracted patterns are highly correlated to the daily routine of users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hidden patterns and contexts play an important part in intelligent pervasive systems. Most of the existing works have focused on simple forms of contexts derived directly from raw signals. High-level constructs and patterns have been largely neglected or remained under-explored in pervasive computing, mainly due to the growing complexity over time and the lack of efficient principal methods to extract them. Traditional parametric modeling approaches from machine learning find it difficult to discover new, unseen patterns and contexts arising from continuous growth of data streams due to its practice of training-then-prediction paradigm. In this work, we propose to apply Bayesian nonparametric models as a systematic and rigorous paradigm to continuously learn hidden patterns and contexts from raw social signals to provide basic building blocks for context-aware applications. Bayesian nonparametric models allow the model complexity to grow with data, fitting naturally to several problems encountered in pervasive computing. Under this framework, we use nonparametric prior distributions to model the data generative process, which helps towards learning the number of latent patterns automatically, adapting to changes in data and discovering never-seen-before patterns, contexts and activities. The proposed methods are agnostic to data types, however our work shall demonstrate to two types of signals: accelerometer activity data and Bluetooth proximal data. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a Bayesian nonparametric framework for multilevel clustering which utilizes group- level context information to simultaneously discover low-dimensional structures of the group contents and partitions groups into clusters. Using the Dirichlet process as the building block, our model constructs a product base-measure with a nested structure to accommodate content and context observations at multiple levels. The proposed model possesses properties that link the nested Dinchiet processes (nDP) and the Dirichlet process mixture models (DPM) in an interesting way: integrating out all contents results in the DPM over contexts, whereas integrating out group-specific contexts results in the nDP mixture over content variables. We provide a Polyaurn view of the model and an efficient collapsed Gibbs inference procedure. Extensive experiments on real-world datasets demonstrate the advantage of utilizing context information via our model in both text and image domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 My research is to exploit side information into advanced Bayesian nonparametric models. We have developed some novel models for data clustering and medical data analysis and also have made our methods scalable for large-scale data. I have published my research in several journal and conference papers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In data science, anomaly detection is the process of identifying the items, events or observations which do not conform to expected patterns in a dataset. As widely acknowledged in the computer vision community and security management, discovering suspicious events is the key issue for abnormal detection in video surveil-lance. The important steps in identifying such events include stream data segmentation and hidden patterns discovery. However, the crucial challenge in stream data segmenta-tion and hidden patterns discovery are the number of coherent segments in surveillance stream and the number of traffic patterns are unknown and hard to specify. Therefore, in this paper we revisit the abnormality detection problem through the lens of Bayesian nonparametric (BNP) and develop a novel usage of BNP methods for this problem. In particular, we employ the Infinite Hidden Markov Model and Bayesian Nonparamet-ric Factor Analysis for stream data segmentation and pattern discovery. In addition, we introduce an interactive system allowing users to inspect and browse suspicious events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regression is at the cornerstone of statistical analysis. Multilevel regression, on the other hand, receives little research attention, though it is prevalent in economics, biostatistics and healthcare to name a few. We present a Bayesian nonparametric framework for multilevel regression where individuals including observations and outcomes are organized into groups. Furthermore, our approach exploits additional group-specific context observations, we use Dirichlet Process with product-space base measure in a nested structure to model group-level context distribution and the regression distribution to accommodate the multilevel structure of the data. The proposed model simultaneously partitions groups into cluster and perform regression. We provide collapsed Gibbs sampler for posterior inference. We perform extensive experiments on econometric panel data and healthcare longitudinal data to demonstrate the effectiveness of the proposed model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The users often have additional knowledge when Bayesian nonparametric models (BNP) are employed, e.g. for clustering there may be prior knowledge that some of the data instances should be in the same cluster (must-link constraint) or in different clusters (cannot-link constraint), and similarly for topic modeling some words should be grouped together or separately because of an underlying semantic. This can be achieved by imposing appropriate sampling probabilities based on such constraints. However, the traditional inference technique of BNP models via Gibbs sampling is time consuming and is not scalable for large data. Variational approximations are faster but many times they do not offer good solutions. Addressing this we present a small-variance asymptotic analysis of the MAP estimates of BNP models with constraints. We derive the objective function for Dirichlet process mixture model with constraints and devise a simple and efficient K-means type algorithm. We further extend the small-variance analysis to hierarchical BNP models with constraints and devise a similar simple objective function. Experiments on synthetic and real data sets demonstrate the efficiency and effectiveness of our algorithms.