Adaptable Bayesian classifier for spatiotemporal nonparametric moving object detection strategies


Autoria(s): Cuevas Rodríguez, Carlos; Mohedano del Pozo, Raúl; García Santos, Narciso
Data(s)

01/08/2012

Resumo

Electronic devices endowed with camera platforms require new and powerful machine vision applications, which commonly include moving object detection strategies. To obtain high-quality results, the most recent strategies estimate nonparametrically background and foreground models and combine them by means of a Bayesian classifier. However, typical classifiers are limited by the use of constant prior values and they do not allow the inclusion of additional spatiodependent prior information. In this Letter, we propose an alternative Bayesian classifier that, unlike those reported before, allows the use of additional prior information obtained from any source and depending on the spatial position of each pixel.

Formato

application/pdf

Identificador

http://oa.upm.es/30540/

Idioma(s)

eng

Publicador

E.T.S.I. Telecomunicación (UPM)

Relação

http://oa.upm.es/30540/1/INVE_MEM_2012_173537.pdf

http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-37-15-3159

info:eu-repo/semantics/altIdentifier/doi/10.1364/OL.37.003159

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

Optics Letters, ISSN 0146-9592, 2012-08, Vol. 37, No. 15

Palavras-Chave #Telecomunicaciones #Robótica e Informática Industrial
Tipo

info:eu-repo/semantics/article

Artículo

PeerReviewed