964 resultados para Bayesian Inference, HIghest Posterior Density, Invariance, Odds Ratio, Objective Priors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper distinct prior distributions are derived in a Bayesian inference of the two-parameters Gamma distribution. Noniformative priors, such as Jeffreys, reference, MDIP, Tibshirani and an innovative prior based on the copula approach are investigated. We show that the maximal data information prior provides in an improper posterior density and that the different choices of the parameter of interest lead to different reference priors in this case. Based on the simulated data sets, the Bayesian estimates and credible intervals for the unknown parameters are computed and the performance of the prior distributions are evaluated. The Bayesian analysis is conducted using the Markov Chain Monte Carlo (MCMC) methods to generate samples from the posterior distributions under the above priors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medical errors originating in health care facilities are a significant source of preventable morbidity, mortality, and healthcare costs. Voluntary error report systems that collect information on the causes and contributing factors of medi- cal errors regardless of the resulting harm may be useful for developing effective harm prevention strategies. Some patient safety experts question the utility of data from errors that did not lead to harm to the patient, also called near misses. A near miss (a.k.a. close call) is an unplanned event that did not result in injury to the patient. Only a fortunate break in the chain of events prevented injury. We use data from a large voluntary reporting system of 836,174 medication errors from 1999 to 2005 to provide evidence that the causes and contributing factors of errors that result in harm are similar to the causes and contributing factors of near misses. We develop Bayesian hierarchical models for estimating the log odds of selecting a given cause (or contributing factor) of error given harm has occurred and the log odds of selecting the same cause given that harm did not occur. The posterior distribution of the correlation between these two vectors of log-odds is used as a measure of the evidence supporting the use of data from near misses and their causes and contributing factors to prevent medical errors. In addition, we identify the causes and contributing factors that have the highest or lowest log-odds ratio of harm versus no harm. These causes and contributing factors should also be a focus in the design of prevention strategies. This paper provides important evidence on the utility of data from near misses, which constitute the vast majority of errors in our data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas disease is still a major public health problem in Latin America. Its causative agent, Trypanosoma cruzi, can be typed into three major groups, T. cruzi I, T. cruzi II and hybrids. These groups each have specific genetic characteristics and epidemiological distributions. Several highly virulent strains are found in the hybrid group; their origin is still a matter of debate. The null hypothesis is that the hybrids are of polyphyletic origin, evolving independently from various hybridization events. The alternative hypothesis is that all extant hybrid strains originated from a single hybridization event. We sequenced both alleles of genes encoding EF-1 alpha, actin and SSU rDNA of 26 T. cruzi strains and DHFR-TS and TR of 12 strains. This information was used for network genealogy analysis and Bayesian phylogenies. We found T. cruzi I and T. cruzi II to be monophyletic and that all hybrids had different combinations of T. cruzi I and T. cruzi II haplotypes plus hybrid-specific haplotypes. Bootstrap values (networks) and posterior probabilities (Bayesian phylogenies) of clades supporting the monophyly of hybrids were far below the 95% confidence interval, indicating that the hybrid group is polyphyletic. We hypothesize that T. cruzi I and T. cruzi II are two different species and that the hybrids are extant representatives of independent events of genome hybridization, which sporadically have sufficient fitness to impact on the epidemiology of Chagas disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are both theoretical and empirical reasons for believing that the parameters of macroeconomic models may vary over time. However, work with time-varying parameter models has largely involved Vector autoregressions (VARs), ignoring cointegration. This is despite the fact that cointegration plays an important role in informing macroeconomists on a range of issues. In this paper we develop time varying parameter models which permit cointegration. Time-varying parameter VARs (TVP-VARs) typically use state space representations to model the evolution of parameters. In this paper, we show that it is not sensible to use straightforward extensions of TVP-VARs when allowing for cointegration. Instead we develop a specification which allows for the cointegrating space to evolve over time in a manner comparable to the random walk variation used with TVP-VARs. The properties of our approach are investigated before developing a method of posterior simulation. We use our methods in an empirical investigation involving a permanent/transitory variance decomposition for inflation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We complete the development of a testing ground for axioms of discrete stochastic choice. Our contribution here is to develop new posterior simulation methods for Bayesian inference, suitable for a class of prior distributions introduced by McCausland and Marley (2013). These prior distributions are joint distributions over various choice distributions over choice sets of di fferent sizes. Since choice distributions over di fferent choice sets can be mutually dependent, previous methods relying on conjugate prior distributions do not apply. We demonstrate by analyzing data from a previously reported experiment and report evidence for and against various axioms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis Entitled Bayesian inference in Exponential and pareto populations in the presence of outliers. The main theme of the present thesis is focussed on various estimation problems using the Bayesian appraoch, falling under the general category of accommodation procedures for analysing Pareto data containing outlier. In Chapter II. the problem of estimation of parameters in the classical Pareto distribution specified by the density function. In Chapter IV. we discuss the estimation of (1.19) when the sample contain a known number of outliers under three different data generating mechanisms, viz. the exchangeable model. Chapter V the prediction of a future observation based on a random sample that contains one contaminant. Chapter VI is devoted to the study of estimation problems concerning the exponential parameters under a k-outlier model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers methods for testing for superiority or non-inferiority in active-control trials with binary data, when the relative treatment effect is expressed as an odds ratio. Three asymptotic tests for the log-odds ratio based on the unconditional binary likelihood are presented, namely the likelihood ratio, Wald and score tests. All three tests can be implemented straightforwardly in standard statistical software packages, as can the corresponding confidence intervals. Simulations indicate that the three alternatives are similar in terms of the Type I error, with values close to the nominal level. However, when the non-inferiority margin becomes large, the score test slightly exceeds the nominal level. In general, the highest power is obtained from the score test, although all three tests are similar and the observed differences in power are not of practical importance. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many applications, such as intermittent data assimilation, lead to a recursive application of Bayesian inference within a Monte Carlo context. Popular data assimilation algorithms include sequential Monte Carlo methods and ensemble Kalman filters (EnKFs). These methods differ in the way Bayesian inference is implemented. Sequential Monte Carlo methods rely on importance sampling combined with a resampling step, while EnKFs utilize a linear transformation of Monte Carlo samples based on the classic Kalman filter. While EnKFs have proven to be quite robust even for small ensemble sizes, they are not consistent since their derivation relies on a linear regression ansatz. In this paper, we propose another transform method, which does not rely on any a priori assumptions on the underlying prior and posterior distributions. The new method is based on solving an optimal transportation problem for discrete random variables. © 2013, Society for Industrial and Applied Mathematics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of Bayesian inference in the inference of time-frequency representations has, thus far, been limited to offline analysis of signals, using a smoothing spline based model of the time-frequency plane. In this paper we introduce a new framework that allows the routine use of Bayesian inference for online estimation of the time-varying spectral density of a locally stationary Gaussian process. The core of our approach is the use of a likelihood inspired by a local Whittle approximation. This choice, along with the use of a recursive algorithm for non-parametric estimation of the local spectral density, permits the use of a particle filter for estimating the time-varying spectral density online. We provide demonstrations of the algorithm through tracking chirps and the analysis of musical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major objective of this study was to estimate heritability and genetic correlations between milk yield (MY) and calving interval (CI) and lactation length (LL) in Murrah buffaloes using Bayesian inference. The database used belongs to the genetic improvement program of four buffalo herds from Brazil. To obtain the estimates of variance and covariance, bivariate analyses were performed with the Gibbs sampler, using the program MTGSAM. The heritability coefficient estimates were 0.28, 0.03 and 0.15 for MY, CI and LL, respectively. The genetic correlations between MY and LL was moderate (0.48). However, the genetic correlation between MY and CI showed large HPD regions (highest posterior density interval). Milk yield was the only trait with clear potential for genetic improvement by direct mass selection. The genetic correlation between MY and LL indicates that indirect selection using milk yield is a potentially beneficialstrategy.Theinterpretation of the estimated genetic correlation between MY and CI is difficult and could be spurious. ©2013 Sociedade Brasileira de Zootecnia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the study was to estimate heritability for calving interval (CI) and age at first calving (AFC) and also calculate repeatability for CI in buffaloes using Bayesian inference. The Brazilian Buffaloes Genetic Improvement Program provided the database. Data consists on information from 628 females and four different herds, born between 1980 and 2003. In order to estimate the variance, univariate analyses were performed employing Gibbs sampler procedure included in the MTGSAM software. The model for CI included the random effects direct additive and permanent environment factors, and the fixed effects of contemporary groups and calving orders. The model for AFC included the direct additive random effect and contemporary groups as a fixed effect. The convergence diagnosis was obtained using Geweke that was implemented through the Bayesian Output Analysis package in R software. The estimated averages were 433.2 days and 36.7months for CI and AFC, respectively. The means, medians and modes for the calculated heritability coefficients were similar. The heritability coefficients were 0.10 and 0.42 for CI and AFC respectively, with a posteriori marginal density that follows a normal distribution for both traits. The repeatability for CI was 0.13. The low heritability estimated for CI indicates that the variation in this trait is, to a large extent, influenced by environmental factors such as herd management policies. The age at first calving has clear potential for yield improvement through direct selection in these animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative analysis of growth genetic parameters is not available for many breeds of buffaloes making selection and breeding decisions an empirical process that lacks robustness. The objective of this study was to estimate heritability for birth weight (BW), weight at 205 days (W205) and 365 days (W365) of age using Bayesian inference. The Brazilian Program for Genetic Improvement of Buffaloes provided the data. For the traits BW, W205 and W365 of Brazilian Mediterranean buffaloes 5169, 3792 and 3883 observations have been employed for the analysis, respectively. In order to obtain the estimates of variance, univariate analyses were conducted using the Gibbs sampler included in the MTGSAM software. The model for BW, W205 and W365 included additive direct and maternal genetic random effects, random maternal permanent environmental effect and contemporary group that was treated as a fixed effect. The convergence diagnosis was performed employing Geweke, a method that uses an algorithm from the Bayesian Output Analysis package that was implemented using R software environment. The average values for weight traits were 37.6 +/- 4.7 kg for BW, 192.7 +/- 40.3 kg for W205 and 298.6 +/- 67.4 kg for W365. The heritability posterior distributions for direct and maternal effects were symmetric and close to those expected in a normal distribution. Direct heritability estimates obtained using the modes were 0.30 (BW), 0.52 (W205) and 0.54 (W365). The maternal heritability coefficient estimates were 0.31, 0.19 and 0.21 for BW, W205 and W365, respectively. Our data suggests that all growth traits and mainly W205 and W365, have clear potential for yield improvement through direct genetic selection.