931 resultados para BIOMAGNETIC RECORDINGS
Resumo:
We analyzed the effectiveness of linear short- and long-term variability time domain parameters, an index of sympatho-vagal balance (SDNN/RMSSD) and entropy in differentiating fetal heart rate patterns (fHRPs) on the fetal heart rate (fHR) series of 5, 3 and 2 min duration reconstructed from 46 fetal magnetocardiograms. Gestational age (GA) varied from 21 to 38 weeks. FHRPs were classified based on the fHR standard deviation. In sleep states, we observed that vagal influence increased with GA, and entropy significantly increased (decreased) with GA (SDNN/RMSSD), demonstrating that a prevalence of vagal activity with autonomous nervous system maturation may be associated with increased sleep state complexity. In active wakefulness, we observed a significant negative (positive) correlation of short-term (long-term) variability parameters with SDNN/RMSSD. ANOVA statistics demonstrated that long-term irregularity and standard deviation of normal-to-normal beat intervals (SDNN) best differentiated among fHRPs. Our results confirm that short-and long-term variability parameters are useful to differentiate between quiet and active states, and that entropy improves the characterization of sleep states. All measures differentiated fHRPs more effectively on very short HR series, as a result of the fMCG high temporal resolution and of the intrinsic timescales of the events that originate the different fHRPs.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose. To determine how Developmental Eye Movement (DEM) test results relate to reading eye movement patterns recorded with the Visagraph in visually normal children, and whether DEM results and recorded eye movement patterns relate to standardized reading achievement scores. Methods. Fifty-nine school-age children (age = 9.7 ± 0.6 years) completed the DEM test and had eye movements recorded with the Visagraph III test while reading for comprehension. Monocular visual acuity in each eye and random dot stereoacuity were measured and standardized scores on independently administered reading comprehension tests [reading progress test (RPT)] were obtained. Results. Children with slower DEM horizontal and vertical adjusted times tended to have slower reading rates with the Visagraph (r = -0.547 and -0.414 respectively). Although a significant correlation was also found between the DEM ratio and Visagraph reading rate (r = -0.368), the strength of the relationship was less than that between DEM horizontal adjusted time and reading rate. DEM outcome scores were not significantly associated with RPT scores. When the relative contribution of reading ability (RPT) and DEM scores was accounted for in multivariate analysis, DEM outcomes were not significantly associated with Visagraph reading rate. RPT scores were associated with Visagraph outcomes of duration of fixations (r = -0.403) and calculated reading rate (r = 0.366) but not with DEM outcomes. Conclusions.DEM outcomes can identify children whose Visagraph recorded eye movement patterns show slow reading rates. However, when reading ability is accounted for, DEM outcomes are a poor predictor of reading rate. Visagraph outcomes of duration of fixation and reading rate relate to standardized reading achievement scores; however, DEM results do not. Copyright © 2011 American Academy of Optometry.
Resumo:
Feedback on student performance, whether in the classroom or on written assignments, enables them to reflect on their understandings and restructure their thinking in order to develop more powerful ideas and capabilities. Research has identified a number of broad principles of good feedback practice. These include the provision of feedback that facilitates the development of reflection in learning; helps clarify what good performance is in terms of goals, criteria and expected standards; provides opportunities to close the gap between current and desired performance; delivers high quality information to students about their learning; and encourages positive motivational beliefs and self-esteem. However, high staff–student ratios and time pressures often result in a gulf between this ideal and reality. Whilst greater use of criteria referenced assessment has enabled an improvement in the extent of feedback being provided to students, this measure alone does not go far enough to satisfy the requirements of good feedback practice. Technology offers an effective and efficient means by which personalised feedback may be provided to students. This paper presents the findings of a trial of the use of the freely available Audacity program to provide individual feedback via MP3 recordings to final year Media Law students at the Queensland University of Technology on their written assignments. The trial has yielded wide acclaim by students as an effective means of explaining the exact reasons why they received the marks they were awarded, the things they did well and the areas needing improvement. It also showed that good feedback practice can be achieved without the burden of an increase in staff workload.
Resumo:
This technical report describes the methods used to obtain a list of acoustic indices that are used to characterise the structure and distribution of acoustic energy in recordings of the natural environment. In particular it describes methods for noise reduction from recordings of the environment and a fast clustering algorithm used to estimate the spectral richness of long recordings.
Resumo:
Acoustic sensors provide an effective means of monitoring biodiversity at large spatial and temporal scales. They can continuously and passively record large volumes of data over extended periods, however these data must be analysed to detect the presence of vocal species. Automated analysis of acoustic data for large numbers of species is complex and can be subject to high levels of false positive and false negative results. Manual analysis by experienced users can produce accurate results, however the time and effort required to process even small volumes of data can make manual analysis prohibitive. Our research examined the use of sampling methods to reduce the cost of analysing large volumes of acoustic sensor data, while retaining high levels of species detection accuracy. Utilising five days of manually analysed acoustic sensor data from four sites, we examined a range of sampling rates and methods including random, stratified and biologically informed. Our findings indicate that randomly selecting 120, one-minute samples from the three hours immediately following dawn provided the most effective sampling method. This method detected, on average 62% of total species after 120 one-minute samples were analysed, compared to 34% of total species from traditional point counts. Our results demonstrate that targeted sampling methods can provide an effective means for analysing large volumes of acoustic sensor data efficiently and accurately.
Resumo:
The development and recording of 10 songs for a CD to accompany DeepBlue's new live orchestra production "Who Are You" which began touring Australia and Asia in 2012.
Resumo:
The work described in this technical report is part of an ongoing project to build practical tools for the manipulation, analysis and visualisation of recordings of the natural environment. This report describes the methods we use to remove background noise from spectrograms. It updates techniques previously described in Towsey and Planitz (2011), Technical report: acoustic analysis of the natural environment, downloadable from: http://eprints.qut.edu.au/41131/. It also describes noise removal from wave-forms, a technique not described in the above 2011 technical report.
Resumo:
Acoustic sensors can be used to estimate species richness for vocal species such as birds. They can continuously and passively record large volumes of data over extended periods. These data must subsequently be analyzed to detect the presence of vocal species. Automated analysis of acoustic data for large numbers of species is complex and can be subject to high levels of false positive and false negative results. Manual analysis by experienced surveyors can produce accurate results; however the time and effort required to process even small volumes of data can make manual analysis prohibitive. This study examined the use of sampling methods to reduce the cost of analyzing large volumes of acoustic sensor data, while retaining high levels of species detection accuracy. Utilizing five days of manually analyzed acoustic sensor data from four sites, we examined a range of sampling frequencies and methods including random, stratified, and biologically informed. We found that randomly selecting 120 one-minute samples from the three hours immediately following dawn over five days of recordings, detected the highest number of species. On average, this method detected 62% of total species from 120 one-minute samples, compared to 34% of total species detected from traditional area search methods. Our results demonstrate that targeted sampling methods can provide an effective means for analyzing large volumes of acoustic sensor data efficiently and accurately. Development of automated and semi-automated techniques is required to assist in analyzing large volumes of acoustic sensor data. Read More: http://www.esajournals.org/doi/abs/10.1890/12-2088.1
Resumo:
Interpreting acoustic recordings of the natural environment is an increasingly important technique for ecologists wishing to monitor terrestrial ecosystems. Technological advances make it possible to accumulate many more recordings than can be listened to or interpreted, thereby necessitating automated assistance to identify elements in the soundscape. In this paper we examine the problem of estimating avian species richness by sampling from very long acoustic recordings. We work with data recorded under natural conditions and with all the attendant problems of undefined and unconstrained acoustic content (such as wind, rain, traffic, etc.) which can mask content of interest (in our case, bird calls). We describe 14 acoustic indices calculated at one minute resolution for the duration of a 24 hour recording. An acoustic index is a statistic that summarizes some aspect of the structure and distribution of acoustic energy and information in a recording. Some of the indices we calculate are standard (e.g. signal-to-noise ratio), some have been reported useful for the detection of bioacoustic activity (e.g. temporal and spectral entropies) and some are directed to avian sources (spectral persistence of whistles). We rank the one minute segments of a 24 hour recording in descending order according to an "acoustic richness" score which is derived from a single index or a weighted combination of two or more. We describe combinations of indices which lead to more efficient estimates of species richness than random sampling from the same recording, where efficiency is defined as total species identified for given listening effort. Using random sampling, we achieve a 53% increase in species recognized over traditional field surveys and an increase of 87% using combinations of indices to direct the sampling. We also demonstrate how combinations of the same indices can be used to detect long duration acoustic events (such as heavy rain and cicada chorus) and to construct long duration (24 h) spectrograms.
Resumo:
Acoustic recordings of the environment are an important aid to ecologists monitoring biodiversity and environmental health. However, rapid advances in recording technology, storage and computing make it possible to accumulate thousands of hours of recordings, of which, ecologists can only listen to a small fraction. The big-data challenge is to visualize the content of long-duration audio recordings on multiple scales, from hours, days, months to years. The visualization should facilitate navigation and yield ecologically meaningful information. Our approach is to extract (at one minute resolution) acoustic indices which reflect content of ecological interest. An acoustic index is a statistic that summarizes some aspect of the distribution of acoustic energy in a recording. We combine indices to produce false-colour images that reveal acoustic content and facilitate navigation through recordings that are months or even years in duration.
Resumo:
Faunal vocalisations are vital indicators for environmental change and faunal vocalisation analysis can provide information for answering ecological questions. Therefore, automated species recognition in environmental recordings has become a critical research area. This thesis presents an automated species recognition approach named Timed and Probabilistic Automata. A small lexicon for describing animal calls is defined, six algorithms for acoustic component detection are developed, and a series of species recognisers are built and evaluated.The presented automated species recognition approach yields significant improvement on the analysis performance over a real world dataset, and may be transferred to commercial software in the future.
Resumo:
Acoustic recordings of the environment are an important aid to ecologists monitoring biodiversity and environmental health. However, rapid advances in recording technology, storage and computing make it possible to accumulate thousands of hours of recordings, of which, ecologists can only listen to a small fraction. The big-data challenge addressed in this paper is to visualize the content of long-duration audio recordings on multiple scales, from hours, days, months to years. The visualization should facilitate navigation and yield ecologically meaningful information. Our approach is to extract (at one minute resolution) acoustic indices which reflect content of ecological interest. An acoustic index is a statistic that summarizes some aspect of the distribution of acoustic energy in a recording. We combine indices to produce false-color images that reveal acoustic content and facilitate navigation through recordings that are months or even years in duration.
Resumo:
Environmental monitoring has become increasingly important due to the significant impact of human activities and climate change on biodiversity. Environmental sound sources such as rain and insect vocalizations are a rich and underexploited source of information in environmental audio recordings. This paper is concerned with the classification of rain within acoustic sensor re-cordings. We present the novel application of a set of features for classifying environmental acoustics: acoustic entropy, the acoustic complexity index, spectral cover, and background noise. In order to improve the performance of the rain classification system we automatically classify segments of environmental recordings into the classes of heavy rain or non-rain. A decision tree classifier is experientially compared with other classifiers. The experimental results show that our system is effective in classifying segments of environmental audio recordings with an accuracy of 93% for the binary classification of heavy rain/non-rain.