970 resultados para BIOLOGICALLY-ACTIVE METABOLITES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenolic acids are aromatic secondary plant metabolites, widely spread throughout the plant kingdom. Due to their biological and pharmacological properties, they have been playing an important role in phytotherapy and consequently techniques for their separation and purification are in need. This thesis aims at exploring new sustainable separation processes based on ionic liquids (ILs) in the extraction of biologically active phenolic acids. For that purpose, three phenolic acids with similar chemical structures were selected: cinnamic acid, p-coumaric acid and caffeic acid. In the last years, it has been shown that ionic liquids-based aqueous biphasic systems (ABSs) are valid alternatives for the extraction, recovery and purification of biomolecules when compared to conventional ABS or extractions carried out with organic solvents. In particular, cholinium-based ILs represent a clear step towards a greener chemistry, while providing means for the implementation of efficient techniques for the separation and purification of biomolecules. In this work, ABSs were implemented using cholinium carboxylate ILs using either high charge density inorganic salt (K3PO4) or polyethylene glycol (PEG) to promote the phase separation of aqueous solutions containing three different phenolic acids. These systems allow for the evaluation of effect of chemical structure of the anion on the extraction efficiency. Only one imidazolium-based IL was used in order to establish the effect of the cation chemical structure. The selective extraction of one single acid was also researched. Overall, it was observed that phenolic acids display very complex behaviours in aqueous solutions, from dimerization to polymerization and also hetero-association are quite frequent phenomena, depending on the pH conditions. These phenomena greatly hinder the correct quantification of these acids in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the crystal structures of the respective title compounds, C12H10N4O, C13H11N3O . H2O and C11K9N3O2, variations in the torsion angles of the aromatic pyridyl and benzoyl groups are observed, and the disposition of the heterocyclic aldehyde is shown to be influenced by the ring size of this group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Letter we describe a 12% overall yield synthesis of a model for homoallylic oxygenated alpha-methylene-gamma-butyrolactones with relative stereochemistry defined by selective hydrogenation with Rh/Al(2)O(3). The synthesis was realized in 9 steps involving simple reactions. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conformationally biased decapeptide agonist of human C5a (C5a(65-74)Y65,F67,P69,P71,D-Ala73 or YSFKPMPLaR) was used as a functional probe of the C5a receptor (C5aR) in order to understand the conformational features in the C-terminal effector region of C5a that are important for C5aR binding and signal transduction. YSFKPMPLaR was a potent, full agonist of C5a, but at higher concentrations had a superefficacious effect compared to the natural factor. The maximal efficacy of this analogue was 216 +/- 56% that of C5a in stimulating the release of beta-glucuronidase from human neutrophils. C5aR activation and binding curves both occurred in the same concentration range with YSFKPMPLaR, characteristics not observed with natural C5a or more conformationally flexible C-terminal agonists. YSFKPMPLaR was then used as a C-terminal effector template onto which was synthesized various C5aR binding determinants from the N-terminal core domain of the natural factor. In general, the presence of N-terminal binding determinants had little effect on either potency or binding affinity when the C-terminal effector region was presented to the C5aR in this biologically active conformation. However, one peptide, C5a(12-20)-Ahx-YSFKPMPLaR, expressed a 100-fold increase in affinity for the neutrophil C5aR and a 6-fold increase in potency relative to YSFKPMPLaR. These analyses showed that the peptides used in this study have up to 25% of the potency of C5a in human fetal artery and up to 5% of the activity of C5a in the PMN enzyme release assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ligands of the 2-pyridylcarbaldehyde isonicotinoylhydrazone class show high iron (Fe) sequestering efficacy and have potential as agents for the treatment of Fe overload disease. We have investigated the mechanisms responsible for their high activity. X-ray crystallography studies show that the tridentate chelate 2-pyridylcarbaldehyde isonicotinoylhydrazone undergoes an unexpected oxidation to isonicotinoyl(picolinoyl)hydrazine when complexed with Fe-III. In contrast, in the absence of Fel the parent hydrazone is not oxidized in aerobic aqueous solution. To examine whether the diacylhydrazine could be responsible for the biological effects of 2-pyridylcarbaldehyde isonicotinoylhydrazone, their Fe chelation efficacy was compared. In contrast to its parent hydrazone, the diacylhydrazine showed little Fe chelation activity. Potentiometric titrations suggested that this might be because the diacylhydrazine was charged at physiological pH, hindering its access across membranes to intracellular Fe pools. In contrast, the Fe complex of this diacylhydrazine was charge neutral, which may allow facile movement through membranes. These data allow a model of Fe chelation for this compound to be proposed: the parent aroylhydrazone diffuses through cell membranes to bind Fe and is subsequently oxidized to the diacylhydrazine complex which then diffuses from the cell. Other diacylhydrazine analogues that were charge neutral at physiological pH demonstrated high Fe chelation efficacy. Thus, for this class of ligands, the charge of the chelator appears to be an important factor for determining their ability to access intracellular Fe. The results of this study are significant for understanding the biological activity of 2-pyridylcarbaldehyde isonicotinoylhydrazone and for the design of novel diacylhydrazine chelators for clinical use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iron chelators of the 2-pyridinecarbaldehyde isonicotinoylhydrazone (HPCIH) class show high potential for the treatment of iron overload diseases. In the present study, selected first-row transition metal (from Mn to Zn) complexes with HPCIH and 2-pyridinecarbaldehyde (4'-aminobenzoyl)hydrazone (HPCAH) were synthesised and characterised. Crystallography reveals that HPCAH exclusively forms bis complexes with divalent transition metals, with each ligand coordinating meridionally through its pyridine-N, imine-N and carbonyl-O atoms, forming distorted octahedral cis-MN4O2 complexes. Complexes of HPCIH were more varied and unpredictable, with metal/ligand ratios of 1:1, 1:2, 2:2 and 3:2 obtained with different metal ions. The isonicotinoyl ring N-atom in HPCIH was found to be an effective ligand, and this resulted in the varied metal/ligand ratios observed. The formation constants of divalent metal complexes with HPCIH were determined by potentiometric titrations and the values obtained were consistent with similar tridentate ligands and with the Irving-Williams order. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

10º Encontro Nacional de Química Orgânica e 1º Simpósio Luso-Brasileiro de Química Orgânica, Lisboa, 4-6 Setembro de 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insecticidal effect of six commercially available plant oils was tested against 4th larval instars of Culex pipiens. Larvae were originally collected from Meit El-Attar, Qalyubia Governorate, Egypt, and then reared in the laboratory until F1 generation. The LC50 values were 32.42, 47.17, 71.37, 83.36, 86.06, and 152.94 ppm for fenugreek (Trigonella foenum-grecum), earth almond (Cyperus esculentus), mustard (Brassica compestris), olibanum (Boswellia serrata), rocket (Eruca sativa), and parsley (Carum ptroselinum), respectively. The tested oils altered some biological aspects of C. pipiens, for instance, developmental periods, pupation rates, and adult emergences. The lowest concentrations of olibanum and fenugreek oils caused remarkable prolongation of larval and pupal durations. Data also showed that the increase of concentrations was directly proportional to reduction in pupation rates and adult emergences. Remarkable decrease in pupation rate was achieved by mustard oil at 1000 ppm. Adult emergence was suppressed by earth almond and fenugreek oils at 25 ppm. In addition, the tested plant oils exhibited various morphological abnormalities on larvae, pupae, and adult stages. Consequently, fenugreek was the most potent oil and the major cause of malformation of both larval and pupal stages. Potency of the applied plant oils provided an excellent potential for controlling C. pipiens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunotherapy with monoclonal and polyclonal immunoglobulin is successfully applied to improve many clinical conditions, including infection, autoimmune diseases, or immunodeficiency. Most immunoglobulin products, recombinant or plasma-derived, are based on IgG antibodies, whereas to date, the use of IgA for therapeutic application has remained anecdotal. In particular, purification or production of large quantities of secretory IgA (SIgA) for potential mucosal application has not been achieved. In this work, we sought to investigate whether polymeric IgA (pIgA) recovered from human plasma is able to associate with secretory component (SC) to generate SIgA-like molecules. We found that ∼15% of plasma pIgA carried J chain and displayed selective SC binding capacity either in a mixture with monomeric IgA (mIgA) or after purification. The recombinant SC associated covalently in a 1:1 stoichiometry with pIgA and with similar efficacy as colostrum-derived SC. In comparison with pIgA, the association with SC delayed degradation of SIgA by intestinal proteases. Similar results were obtained with plasma-derived IgM. In vitro, plasma-derived IgA and SIgA neutralized Shigella flexneri used as a model pathogen, resulting in a delay of bacteria-induced damage targeted to polarized Caco-2 cell monolayers. The sum of these novel data demonstrates that association of plasma-derived IgA or IgM with recombinant/colostrum-derived SC is feasible and yields SIgA- and SIgM-like molecules with similar biochemical and functional characteristics as mucosa-derived immunoglobulins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: CYP2D6 is the key enzyme responsible for tamoxifen bioactivation mainly into endoxifen. This gene is highly polymorphic and breast cancer patients classified as CYP2D6 poor metabolizers (PM) or intermediate metabolizers (IM) appear to show low concentrations of endoxifen and to achieve less benefit from tamoxifen treatment. Purpose: This prospective, open-label trial aimed to assess how the increase of tamoxifen dose influences the level of endoxifen in the different genotype groups (poor-, intermediate-, and extensive-metabolizers (EM)). We examined the impact of doubling tamoxifen dose to 20mg twice daily on endoxifen plasma concentrations across these genotype groups. Patients and methods: Patients were assayed for CYP2D6 genotype and phenotype using dextromethorphan test. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen plasma levels were determined on 2 occasions at baseline (20mg/day of tamoxifen) and at day 30, 90 and 120 after dose increase (20 mg twice daily) using liquid chromatography-tandem-mass spectrometry. Endoxifen plasma levels were measured 6 to 24 hours after last drug intake to evaluate its accumulation before and after doubling tamoxifen dosage. ANOVA was used to evaluate endoxifen levels increase and difference between genotype groups. Results: 63 patients are available for analysis to date. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen plasma reached steady state at 30 day after tamoxifen dose escalation, with a significant increase compared to baseline by 1.6 to 1.8 fold : geometric mean plasma concentrations (CV %) were 140 ng/mL (45%) at baseline vs 255 (47%) at day 30 for tamoxifen (P < 0.0001); 256 (49%) vs 408 (64%) for N-desmethyltamoxifen (P < 0.0001); 2.4 (46%) vs 3.9 (51%) for 4-OH-tamoxifen (P < 0.0001); and 20 (91%) vs 33 (91%) for endoxifen (P < 0.02). On baseline, endoxifen levels tended to be lower in PM: 7 ng/mL (36%), than IM: 16 ng/mL (70%), P=0.08, and EM: 24 ng/mL (71%), P<0.001. After doubling tamoxifen dosage, endoxifen concentrations rose similarly in PM, IM and EM with respectively, 1.5 (18%), 1.5 (28%) and 1.7 (30%) fold increase from baseline, P=0.18. Conclusion: Endoxifen exposure varies widely under standard tamoxifen dosage, with CYP2D6 genotype explaining only a minor part of this variability. It increases consistently on doubling tamoxifen dose, similarly across genotypes. This would enable exposure optimization based on concentration monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemokines constitute an expanding protein family of over 40 members which exhibit a wide variety of biological activities and are involved in many normal physiological processes, such as cellular migration, differentiation and activation, but also in pathological situations, such as inflammation and metastasis. Over the last few years, we have developed methods to manufacture long synthetic peptides of up to 130 residues, and to achieve the formation of native-like cysteine pairings. This ability prompted us to undertake the total chemical synthesis of chemokines. So far, we have successfully produced over 30 chemokine species, which exhibit biological activities similar to, or greater than, those reported by others. Chemical synthesis offers a clear advantage over recombinant technologies for the introduction of fluorochromes and haptens at molecularly defined positions. In addition, approval of chemically synthesized products for use in humans is straightforward compared with material produced by biological methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis a total of 86 compounds containing the hetero atoms oxygen and nitrogen were studied under electron ionization mass spectrometry (EIMS). These compounds are biologically active and were synthesized by various research groups. The main attention of this study was paid on the fragmentations related to different tautomeric forms of 2- phenacylpyridines, 2-phenacylquinolines, 8-aryl-3,4-dioxo-2H,8H-6,7-dihydroimidazo- [2,1-c][1,2,4]triazines and aryl- and benzyl-substituted 2,3-dihydroimidazo[1,2-a]pyrimidine-5,7-(1H,6H)-diones. Also regio/stereospecific effects on fragmentations of pyrrolo- and isoindoloquinazolinones and naphthoxazine, naphthpyrrolo-oxazinone and naphthoxazino-benzoxazine derivatives were screened. Results were compared with NMR data, when available. The first part of thesis consists of theory and literature review of different types of tautomerism and fragmentation mechanisms in EIMS. The effects of tautomerism in biological systems are also briefly reviewed. In the second part of the thesis the own results of the author, based on six publications,are discussed. For 2-phenacylpyridines and 2-phenacylquinolines the correlation of different Hammett substituent constants to the relative abundances (RA) or total ion currents (% TIC) of selected ions were investigated. Although it was not possible to assign most of the ions formed unambiguously to the different tautomers, the linear fits of their RAs and % TICs can be related to changing contributions of different tautomeric forms. For dioxoimidazotriazines and imidazopyrimidinediones the effects of substituents were rather weak. The fragmentations were also found useful for obtaining structural information. Some stereoisomeric pairs of pyrrolo- and isoindoloquinazolines and regiomeric pairs of naphtoxazine derivatives showed clear differences in thir mass spectra. Some mechanisms are suggested for their fragmentations.