936 resultados para Axon Withdrawal
Resumo:
beta2-Laminin is important for the formation of neuromuscular junctions in vertebrates. Previously, we have inactivated the gene that encodes for beta2-laminin in mice and observed predominantly prejunctional structural defects. In this study, we have used both intra- and extracellular recording methods to investigate evoked neurotransmission in beta2-laminin-deficient mice, from postnatal day 8 (P8) through to day 18(P18). Our results confirmed that there was a decrease in the frequency of spontaneous release, but no change in the postjunctional response to such release. Analysis of evoked neurotransmission showed an increase in the frequency of stimuli that failed to elicit an evoked postjunctional response in the mutants compared to litter mate controls, resulting in a 50% reduction in mean quantal content at mutant terminals. Compared to littermate controls, beta2-laminin-deficient terminals showed greater synaptic depression when subjected to high frequency stimulation. Furthermore, the paired pulse ratio of the first two stimuli was significantly lower in beta2-laminin mutant terminals. Statistical analysis of the binomial parameters of release showed that the decrease in quantal content was due to a decrease in the number of release sites without any significant change in the average probability of release. This suggestion was supported by the observation of fewer synaptic vesicle protein 2 (SV2)-positive varicosities in beta2-laminin-deficient terminals and by ultrastructural observations showing smaller terminal profiles and increased Schwann cell invasion in beta2-laminin mutants; the differences between beta2-laminin mutants and wild-type mice were the same at both P8 and P18. From these results we conclude that beta2-laminin plays a role in the early structural development of the neuromuscular junction. We also suggest that transmitter release activity may act as a deterrent to Schwarm cell invasion in the absence of beta2-laminin.
Resumo:
Recent research has focused on the N-methyl-D-aspartate receptor system as a major site of ethanol action in the brain and specifically on compensatory changes in the expression of the polyamine-sensitive NR2B subunit. Therefore, we examined the effects of chronic ethanol treatment on polyamine homeostasis in the rat brain. Wistar rats were made dependent by ethanol vapor inhalation. This caused a rise in hippocampal ornithine decarboxylase (ODC) activity that was correlated with the appearance of physiological dependence. ODC activity returned to control levels within 3 days of ethanol withdrawal. Enzyme activity also increased in the cerebral cortex, striatum, and cerebellum of the ethanol-dependent rats. The concentration of the polyamines (putrescine, spermidine, and spermine) in the hippocampus was increased in ethanol-dependent rats. Injection of the ODC inhibitor, gamma-difluoromethylornithine (500 mg/kg) at the onset of withdrawal resulted in a significant reduction in the severity of withdrawal behaviors. The level of ODC activity and the severity of withdrawal behaviors were positively correlated. Perturbed polyamine homeostasis may represent an important molecular component in the initiation of ethanol withdrawal behaviors in the ethanol-dependent rat.
Resumo:
Chondroitin sulfate proteoglycans display both inhibitory and stimulatory effects on cell adhesion and neurite outgrowth in vitro. The functional activity of these proteoglycans appears to be context specific and dependent on the presence of different chondroitin sulfate-binding molecules. Little is known about the role of chondroitin sulfate proteoglycans in the growth and guidance of axons in vivo. To address this question, we examined the effects of exogenous soluble chondroitin sulfates on the growth and guidance of axons arising from a subpopulation of neurons in the vertebrate brain which express NOC-2, a novel glycoform of the neural cell adhesion molecule N-CAM. Intact brains of stage 28 Xenopus embryos were unilaterally exposed to medium containing soluble exogenous chondroitin sulfates. When exposed to chondroitin sulfate, NOC-2(+) axons within the tract of the postoptic commissure failed to follow their normal trajectory across the ventral midline via the ventral commissure in the midbrain. Instead, these axons either stalled or grew into the dorsal midbrain or continued growing longitudinally within the ventral longitudinal tract. These findings suggest that chondroitin sulfate proteoglycans indirectly modulate the growth and guidance of a subpopulation of forebrain axons by regulating either matrix-bound or cell surface cues at specific choice points within the developing vertebrate brain. (C) 1998 Academic Press.
Resumo:
We developed a system for time-lapse observation of identified neurons in the central nervous system (CNS) of the Drosophila embryo. Using this system, we characterize the dynamics of filopodia and axon growth of the motorneuron RP2 as it navigates anteriorly through the CNS and then laterally along the intersegmental nerve (ISN) into the periphery. We find that both axonal extension and turning occur primarily through the process of filopodial dilation. In addition, we used the GAL4-UAS system to express the fusion protein Tau-GFP in a subset of neurons, allowing us to correlate RP2's patterns of growth with a subset of axons in its environment. In particular, we show that RP2's sharp lateral turn is coincident with the nascent ISN. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Chronic ethanol exposure and subsequent withdrawal are known to change NMDA receptor activity. This study examined the effects of chronic ethanol administration and withdrawal on the expression of several NMDA receptor subunit and splice variant mRNAs in the rat cerebral cortex. Ethanol dependence was induced by ethanol vapour exposure. To delineate between seizure-induced changes in expression during withdrawal and those due to withdrawal per se, another group of naive rats was treated with pentylenetetrazol (PTZ) injection (30 mg/kg, i.p.). RNA samples from the cortices of chronically treated and withdrawing animals were compared to those from pairfed controls. Changes in NMDA receptor mRNA expression were determined using ribonuclease protection assays targetting the NR2A, -2B, -2C and NR1-pan subunits as well as the three alternatively spliced NR1 inserts (NR1-pan describes all the known NR1 splice variants generated from the 5' insert and the two 3' inserts). The ratio of NR1 mRNA incorporating the 5' insert vs, that lacking it was decreased during ethanol exposure and up to 48 h after withdrawal. NR2B mRNA expression was elevated during exposure, but returned to control levels 18 h after withdrawal. Levels of NR2A, NR2C, NR1-pan and both 3' NR1 insert mRNAs from the ethanol-treated groups did not alter compared with the pair-fed control group. No changes in the level of any NMDA receptor subunit mRNA was detected in the PTZ-treated animals. These data support the hypothesis that changes in NMDA receptor subunit composition may underlie a neuronal adaptation to the chronic ethanol-inhibition and may therefore be important in the precipitation of withdrawal hyperactivity. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A scaffold of axons consisting of a pair of longitudinal tracts and several commissures is established during early development of the vertebrate brain. We report here that NOC-2, a cell surface carbohydrate, is selectively expressed by a subpopulation of growing axons in this scaffold in Xenopus. NOC-2 is present on two glycoproteins, one of which is a novel glycoform of the neural cell adhesion molecule N-CAM. When the function of NOC-2 was perturbed using either soluble carbohydrates or anti-NOC-2 antibodies, axons expressing NOC-2 exhibited aberrant growth at specific points in their pathway. NOC-2 is the first-identified axon guidance molecule essential for development of the axon scaffold in the embryonic vertebrate brain.
Resumo:
The present work aimed to evaluate the effects of social separation for 14 days (chronic stress) and of withdrawal from a 14-day treatment with diazepam (acute stress) on the exploratory behaviour of male rats in the elevated plus-maze and on serotonin (5-hydroxytryptamine) turnover in different brain structures. Social separation had an anxiogenic effect, evidenced by fewer entries into, and less time spent on the open arms of the elevated plus-maze. Separation also selectively increased 5-hydroxytryptamine turnover in the hippocampus and median raphe nucleus. Diazepam withdrawal had a similar anxiogenic effect in grouped animals and increased 5-hydroxytryptamine turnover in the same brain structures. Chronic treatment with imipramine during the 14 days of separation prevented the behavioural and neurochemical changes caused by social separation. It is suggested that the increase in anxiety determined by both acute and chronic stress is mediated by the activation of the median raphe nucleus-hippocampal 5-hydroxytryptamine pathway.
Resumo:
We have recently shown that morphine withdrawal sensitizes the neural substrates of fear in the midbrain tectum structures-the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC). In the present study, we investigated the role of mu- and kappa-opioid receptors in the mediation of these effects. Periadolescent rats chronically treated with morphine (10 mg/kg; s.c.) twice daily for 10 days were implanted with an electrode glued to a guide-cannula into the dPAG or the IC. Forty-eight hours after the interruption of this treatment, the effects of intra-dPAG or intra-IC microinjections of [D-Ala(2) N-Me-Phe(4) Gly(5)-ol]-enkephalin (DAMGO; 0.6 and 1 nmol/0.2 mu l) - a selective mu-receptor agonist - or nor-binaltorphimine (BNI; 2.5 and 5 mu g/0.2 mu l) - a selective K-receptor antagonist with tardive action - on the freezing and escape thresholds determined by electrical stimulation of the dPAG and the IC were examined. For both structures, morphine withdrawal produced pro-aversive effects. DAMGO and BNI had antiaversive effects when injected into the dPAG and IC of non-dependent rats. In morphine-withdrawn rats, only BNI continued to promote antiaversive effects in both structures. Whereas DAMGO lost its antiaversive efficacy when injected into the dPAG, only its highest dose promoted antiaversive effects in the IC of morphine-withdrawn rats, suggesting the development of an apparent tolerance. Thus, the enhanced reactivity of the midbrain tectum in morphine-withdrawn periadolescent rats may be due, at least partially, to an impairment of the inhibitory influence of mechanisms mediated by mu-receptors on the neural substrates of fear in this region. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The midbrain rectum structures, dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), are involved in the organization of fear and anxiety states during the exposure to dangerous stimuli. Since opiate withdrawal is associated with increased anxiety in both humans and animals, this study aimed to investigate the possible sensitization of the neural substrates of fear in the midbrain tectum and its influence on the morphine withdrawal-induced anxiety. For the production of drug withdrawal, rats received morphine injections (10 mg/kg; s.c.) twice daily during 10 days. Forty-eight hours after the interruption of the chronic treatment, independent groups were probed in the elevated plus-maze and open-field tests. Additional groups of animals were implanted with a bipolar electrode into the dPAG OF the IC and submitted to the electrical stimulation of these structures for the determination of the freezing and escape thresholds after 48 h of withdrawal. Our results showed that the morphine withdrawal promoted clear-cut levels of anxiety without the somatic signs of opiate withdrawal. Moreover, morphine-withdrawn rats had an increase in the reactivity to the electrical stimulation of the dPAG and the IC. These findings suggest that the increased anxiety induced by morphine withdrawal is associated with the sensitization of the neural substrates of fear in the dPAG and the IC. So, the present results give support to the hypothesis that withdrawal from chronic treatment with morphine leads to fear states possibly engendered by activation of the dPAG and IC, regardless of the production of somatic symptoms. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Withdrawal from morphine leads to the appearance of extreme anxiety accompanied of several physical disturbances, most of them linked to the activation of brainstem regions such as the locus coeruleus, ventral tegmental area, hypothalamic nuclei and periaqueductal grey (PAG). As anxiety remains one of the main components of morphine withdrawal the present study aimed to evaluating the influence of the dorsal aspects of the PAG on the production of this state, since this structure is well-known to be involved in defensive behaviour elicited by anxiety-evoking stimuli. Different groups of animals were submitted to 10 days of i.p. morphine injections, challenged 2 h after with an i.p. injection of naloxone (0.1 mg/kg), and submitted to the plus-maze, open-field and light-dark transition tests. The effects of morphine withdrawal on anxiety-induced Fos immunolabelling were evaluated in four animals that passed by the light-dark transition test randomly chosen for Fos-protein analysis. Besides the PAG, Fos neural expression was conducted in other brain regions involved in the expression of anxiety-related behaviours. Our results showed that morphine withdrawn rats presented enhanced anxiety accompanied of few somatic symptoms. Increased Fos immunolabelling was noted in brain regions well-known to modulate these states as the prelimbic cortex, nucleus accumbens, amygdala and paraventricular hypothalamus. Increased Fos labelling was also observed in the ventral and dorsal aspects of the PAG, a region involved in anxiety-related processes suggesting that this region could be a common neural substrate enlisted during anxiety evoked by dangerous stimuli as well as those elicited by opiate withdrawal. (c) 2008 Elsevier Inc. All rights reserved,
Resumo:
Background Some children with juvenile idiopathic arthritis either do not respond, or are intolerant to, treatment with disease-modifying antirheumatic drugs, including anti-tumour necrosis factor (TNF) drugs. We aimed to assess the safety and efficacy of abatacept, a selective T-cell costimulation modulator, in children with juvenile idiopathic arthritis who had failed previous treatments. Methods We did a double-blind, randomised controlled withdrawal trial between February, 2004, and June, 2006. We enrolled 190 patients aged 6-17 years, from 45 centres, who had a history of active juvenile idiopathic arthritis; at least five active joints; and an inadequate response to, or intolerance to, at least one disease-modifying antirheumatic drug. All 190 patients were given 10 mg/kg of abatacept intravenously in the open-label period of 4 months. Of the 170 patients who completed this lead-in course, 47 did not respond to the treatment according to predefined American College of Rheumatology (ACR) paediatric criteria and were excluded. Of the patients who did respond to abatacept, arthritis, and 62 were randomly assigned to receive placebo at the same dose and timing. The primary endpoint was time to flare of arthritis. Flare was defined as worsening of 30% or more in at least three of six core variables, with at least 30% improvement in no more than one variable. We analysed all patients who were treated as per protocol. This trial is registered, number NCT00095173. Findings Flares of arthritis occurred in 33 of 62 (53%) patients who were given placebo and 12 of 60 (20%) abatacept patients during the double-blind treatment (p=0.0003). Median time to flare of arthritis was 6 months for patients given placebo (insufficient events to calculate IQR); insufficient events had occurred in the abatacept group for median time to flare to be assessed (p=0.0002). The risk of flare in patients who contined abatacept was less than a third of that for controls during that double-blind period (hazard ratio 0.31, 95% CI 0.16-0.95). During the double-blind period, the frequency of adverse events did not differ in the two treatment groups, Adverse events were recorded in 37 abatacept recipients (62%) and 34 (55%) placebo recipients (p=0.47); only two serious adverse events were reported, bouth in controls (p=0.50). Interpretation Selective modulation of T-cell costimulation with abatacept is a rational alternative treatment for children with juvenile idiopathic arthritis. Funding Bristol-Myers Squibb.
Resumo:
The DNA-binding activities of AP-1 and Egr proteins were investigated in nuclear extracts of rat brain regions during ethanol withdrawal. Both DNA-binding activities were transiently elevated in the hippocampus and cerebellum 16 h after withdrawal. In the cerebral cortex, AP-1 and Egr DNA-binding activities increased at 16 h and persisted until 32 and 72 h, respectively. The AP-1 DNA-binding activities in all regions at all times after withdrawal were composed of FosB, c-Jun, JunB, and JunD. c-Fos was detected at all times in the cerebral cortex, at 16 h only in the hippocampus, and from 16 to 72 h in the cerebellum. Withdrawal severity did not affect the composition of the AP-1 DNA-binding activities. Two Egr DNA-binding activities were present in the cortex and hippocampus. The faster-migrating complex predominated in hippocampus, and only the slower-migrating complex (identified as Egr-1) was present in the cerebellum. The increase in DNA-binding activity of immediate early gene-encoded transcription factors supports their proposed role in initiating a cascade of altered gene expression underlying the long-term neuronal response to ethanol withdrawal.
Resumo:
The alcohol withdrawal syndrome (AWS) is a set of signs and symptoms that typically develops in alcohol-dependent people within 6–24 h of their last drink. It may occur unintentionally if abstinence is enforced by illness or injury, or deliberately if the person voluntarily stops drinking because of an alcohol-related illness, or as a prelude to becoming and remaining abstinent. The signs and symptoms of the syndrome (panel) are largely, but not exclusively, those of autonomic hyperactivity, the reverse of the effects of alcohol intoxication. They represent a homoeostatic readjustment of the central nervous system (CNS) to the neuroadaptation that occurs with prolonged alcohol intoxication.1 RC Turner, PR Lichstein and JG Peden et al., Alcohol withdrawal syndromes: a review of pathophysiology, clinical presentation and treatment, J Gen Intern Med 4 (1989), pp. 432–444. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (39)1 They vary in severity from mild to severe.1
Resumo:
Hahnemann considered the secondary action of medicines to be a law of nature and reviewed the conditions under which it occurs. It is closely related to the rebound effects observed with many modern drugs. I review the evidence of the rebound effect of statins that support the similitude principle. In view of their indications in primary and secondary prevention of cardiovascular diseases, statins are widely prescribed. Besides reducing cholesterol biosynthesis, they provide vasculoprotective effects (pleiotropic effects), including improvement of endothelial function, increased nitric oxide bioavailability, antioxidant properties, inhibition of inflammatory and thrombogenic responses, stabilisation of atherosclerotic plaques, and others. Recent studies suggest that suspension of statin treatment leads to a rebound imparing of vascular function, and increasing morbidity and mortality in patients with vascular diseases. Similarly to other classes of modern palliative drugs, this rebound effect is the same as a secondary action or vital reaction described by Samuel Hahnemann, and used in homeopathy in a therapeutic sense. Homeopathy (2010) 99, 255-262.
Resumo:
Background: Homeopathy is based on the principle of similitude (similia similibus curentur) using medicines that cause effects similar to the symptoms of disease in order to stimulate the reaction of the organism. Such vital, homeostatic or paradoxical reaction of the organism is closely related to rebound effect of drugs. Method: Review of the literature concerning the rebound effects of drugs used to suppress gastric acidity, particularly proton pump inhibitors (PPIs). Results: The mechanism of action of these effects is discussed. Rebound in terms of clinical symptoms and physiological effects occur in about 40% of people taking PPIs, their timing depends on the half-life of the drug and the adaptation period of the physiological mechanisms involved. The wide use of PPIs may be linked to the rising incidence of carcinoid tumours. Conclusions: These findings support Hahnemann`s concept of secondary action of drugs. We are developing a homeopathic materia medica and repertory of modern drugs on the basis of reported rebound effects. Homeopathy (2011) 100, 148-156.