111 resultados para Axiomas de Eilenberg-Steenrod


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(ES)El trabajo tratará de explicar el problema de bancarrota (asignación de recursos escasos) y explicar los diferentes tipos de reglas de reparto existentes y axiomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La thèse présente une analyse conceptuelle de l'évolution du concept d'espace topologique. En particulier, elle se concentre sur la transition des espaces topologiques hérités de Hausdorff aux topos de Grothendieck. Il en ressort que, par rapport aux espaces topologiques traditionnels, les topos transforment radicalement la conceptualisation topologique de l'espace. Alors qu'un espace topologique est un ensemble de points muni d'une structure induite par certains sous-ensembles appelés ouverts, un topos est plutôt une catégorie satisfaisant certaines propriétés d'exactitude. L'aspect le plus important de cette transformation tient à un renversement de la relation dialectique unissant un espace à ses points. Un espace topologique est entièrement déterminé par ses points, ceux-ci étant compris comme des unités indivisibles et sans structure. L'identité de l'espace est donc celle que lui insufflent ses points. À l'opposé, les points et les ouverts d'un topos sont déterminés par la structure de celui-ci. Qui plus est, la nature des points change: ils ne sont plus premiers et indivisibles. En effet, les points d'un topos disposent eux-mêmes d'une structure. L'analyse met également en évidence que le concept d'espace topologique évolua selon une dynamique de rupture et de continuité. Entre 1945 et 1957, la topologie algébrique et, dans une certaine mesure, la géométrie algébrique furent l'objet de changements fondamentaux. Les livres Foundations of Algebraic Topology de Eilenberg et Steenrod et Homological Algebra de Cartan et Eilenberg de même que la théorie des faisceaux modifièrent profondément l'étude des espaces topologiques. En contrepartie, ces ruptures ne furent pas assez profondes pour altérer la conceptualisation topologique de l'espace elle-même. Ces ruptures doivent donc être considérées comme des microfractures dans la perspective de l'évolution du concept d'espace topologique. La rupture définitive ne survint qu'au début des années 1960 avec l'avènement des topos dans le cadre de la vaste refonte de la géométrie algébrique entreprise par Grothendieck. La clé fut l'utilisation novatrice que fit Grothendieck de la théorie des catégories. Alors que ses prédécesseurs n'y voyaient qu'un langage utile pour exprimer certaines idées mathématiques, Grothendieck l'emploie comme un outil de clarification conceptuelle. Ce faisant, il se trouve à mettre de l'avant une approche axiomatico-catégorielle des mathématiques. Or, cette rupture était tributaire des innovations associées à Foundations of Algebraic Topology, Homological Algebra et la théorie des faisceaux. La théorie des catégories permit à Grothendieck d'exploiter le plein potentiel des idées introduites par ces ruptures partielles. D'un point de vue épistémologique, la transition des espaces topologiques aux topos doit alors être vue comme s'inscrivant dans un changement de position normative en mathématiques, soit celui des mathématiques modernes vers les mathématiques contemporaines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

549 pp. (Bibliogr. pp. 501-522) (Conclusiones pp. 467-483/ Conclusions pp. 484-497)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A presente dissertação tem o objetivo de mostrar a arte Origami sob um contexto matemático, apresentando um pequeno resumo dos aspectos história e o desenvolvimento do Origami ao longo do tempo e dando maior destaque às suas aplicações na matemática, com o emprego dos axiomas de Huzita e a proposta de ampliação deste conjunto de axiomas com a inclusão da circunferência no papel Origami. Com o uso das técnicas de dobraduras, este trabalho mostra várias aplicações do Origami na matemática, tais como: a solução de alguns problemas clássicos, a construção de polígonos, a demonstração da soma dos ângulos internos de um triângulo, cálculo de algumas áreas, a solução de alguns problemas de máximos e mínimos, seguidos dos conceitos matemático envolvidos em cada um deles. E a inclusão da circunferência no plano Origami permitiu ainda, o estudo das construções das cônicas por dobraduras

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A presente dissertação tem o objetivo de mostrar a arte Origami sob um contexto matemático, apresentando um pequeno resumo dos aspectos história e o desenvolvimento do Origami ao longo do tempo e dando maior destaque às suas aplicações na matemática, com o emprego dos axiomas de Huzita e a proposta de ampliação deste conjunto de axiomas com a inclusão da circunferência no papel Origami. Com o uso das técnicas de dobraduras, este trabalho mostra várias aplicações do Origami na matemática, tais como: a solução de alguns problemas clássicos, a construção de polígonos, a demonstração da soma dos ângulos internos de um triângulo, cálculo de algumas áreas, a solução de alguns problemas de máximos e mínimos, seguidos dos conceitos matemático envolvidos em cada um deles. E a inclusão da circunferência no plano Origami permitiu ainda, o estudo das construções das cônicas por dobraduras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La geometría en el currículo de secundaria se introduce con la intención de proporcionar al alumno una mayor capacidad de comprensión de la organización espacial del mundo que nos rodea, exigiendo para ello un aprendizaje sistematizado. Con este propósito, el ``Grupo PI' trabaja en el desarrollo de actividades para el aula utilizando un material económico y de fácil adquisición como es el papel. El objetivo es proporcionar al profesor un material eficaz para el trabajo en el aula y aproximar a los alumnos a la Geometría Plana a través de una serie de tareas estructuradas que logran una mayor significatividad del proceso de aprendizaje. Se emplearán axiomas del origami para crear secuencias que permitan la construcción de representaciones significativas en los procesos de aprendizaje. Por último, intentaremos mostrar a los profesores la utilidad del papel como material didáctico en la construcción de conocimiento geométrico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este trabajo se presenta la evolución del concepto de infinito y algunas relaciones con otros desarrollos de las matemáticas. También presento el hecho de que de varios axiomas intuitivos podemos obtener proposiciones que ya no nos resultan tan evidentes; esto se sustenta con datos experimentales. Discuto la relación entre la igualdad 0.999...=1 y el concepto de infinito; y la posibilidad de usar el concepto de infinitesimal en cálculo. A partir de esta información, presento algunas consideraciones de importancia para la didáctica de las matemáticas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las clases de matemáticas no debieran tener como objetivo fundamental el aprendizaje de contenidos (definiciones, teoremas, axiomas…) que posteriormente serán aplicados a la resolución de un gran listado de ejercicios y problemas propuestos por el profesor y que justificará el aprendizaje de dichos contenidos, sino que, por el contrario, debieran partir con un problema concreto y familiar para el alumno. Una vez planteado éste y discutido por todos, estudiantes y profesor, traerá como consecuencia la obligación de resolverlo y por tanto la necesidad del aprendizaje de las técnicas que son necesarias para ello y recurrir al uso de tecnología disponible. Es muy importante destacar que durante todo el proceso el alumno hace conjeturas que irá verificando en cada paso. Se dará cuenta que algunas de las conjeturas que hizo son correctas y que otras no lo son, es decir, cometerá errores y aciertos, en función de los cuales irá cimentando su aprendizaje. Pero, por sobre todo, debe aprender que “va al colegio a equivocarse”, pero que no debe quedarse en el error, que en la discusión con sus compañeros y el profesorado encontrará la(s) solucione(s), que es probable que más de una sirva, pero que también unas son mejores que otras, que en algunos casos hay una solución óptima, en definitiva irá “aprendiendo a aprender”. Se ilustra lo anterior planteando resolver un clásico problema de construcción de cajas utilizando como herramienta de aprendizaje el software DERIVE 5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El rol del aprendizaje significativo mediante la utilización de nuevas estrategias de enseñanza. Este aprendizaje involucra un proceso en el que lo que aprendemos es el producto de la información nueva, interpretada a la luz de lo que ya sabemos. Para que haya aprendizaje significativo, es necesario que el alumno pueda relacionar el material de aprendizaje con la estructura de conocimientos de que ya dispone. De esta forma, junto con la motivación favorable para la comprensión, y, los esfuerzos que requiere, una condición esencial del aprendizaje de conceptos será que estos se relacionen con los conocimientos previos de los alumnos. El nuevo conocimiento, que queremos que el alumno aprenda en esta oportunidad, surgirá de un adecuado desarrollo del razonamiento deductivo y manejo de los conocimientos previos. Entendiendo por razonamiento deductivo al proceso de razonamiento en que, para obtener una conclusión lógicamente necesaria a partir de ciertas premisas, los pasos están encadenados siguiendo ciertas reglas lógicas y son justificados rigurosamente. Las justificaciones están basadas en los axiomas y definiciones de la teoría respectiva, en teoremas demostrados con anterioridad y en las premisas o hipótesis del problema o teorema. El docente debe ayudar al estudiante a desarrollar y usar el poder del razonamiento deductivo comprometiéndolo permanentemente a pensar, analizar y deducir conjeturas en clase, además debe crear y seleccionar tareas apropiadas que puedan involucrar la generalización, la organización de datos para validar o refutar una conjetura. Un grupo de bachillerato del último año desarrolló la demostración de un teorema de convergencia de series, con los resultados de un 46% que la realizó exitosamente, versus un 36% que no lo logró. Los alumnos que lograron hacer la demostración, no eran los más estudiosos pero tenían una buena capacidad de razonamiento. En cambio los que generalmente preparan las evaluaciones y que se apoyan mucho en la memoria, no lograron un buen desempeño.