989 resultados para Aviation industry
Resumo:
Research has long documented the value that design brings to the innovation of products and services. The research landscape has transformed in the last decade and now reflects the value of design as a different way thinking that can be applied to the innovation of business models and catalyst for strategic growth. This paper presents a case study of gathering deep customer insights through a design led innovation approach and reveals industry perspectives and attitudes towards the value of deep customer insights within the context of a leading Australian airport corporation. The findings highlight that the process of gathering deep customer insights encourages a design led approach to testing assumptions and developing stronger customer engagement. The richness of the deep customer insights also provided a bridge to future thought by provoking possible product, service and business innovations which aligned to the airport corporation’s vision. The implications of the study reveal how quantitative market data, which reveals broad sociocultural trends into ‘how’ and ‘what’ customers interact with within an airport, can be strongly validated and built upon through qualitative deep customer insights that explore ‘why’ those choices to interact are made. Future research is then presented which aims to widely disseminate a design led approach to innovation within internal stakeholders of the airport corporation through the development of a digital strategy.
Resumo:
The present study is focused on the analysis of the three main governmental measures occurred in 2000-2006 in Russian defense industry: the creation of the holding structures, the establishing of the state monopoly in arms export, and creation of the United Aviation Construction Corporation (Ob¿edinennaya Aviastroitel¿naya Corporatziya), which was initiated by the President and Government of Russian Federation in 2006. The last project assumes the consolidation and joining of all producers of civil and military aviation into one united corporation in order to save the technological and productive potential of the sector after serious crisis in 1990-s. On the other hand, this project can be considered as one of the measures to establish state control and hierarchy in the defense industry. The current project tries to analyze the necessity and the possible impacts of restructuring processes. In order to perform such analysis, I need to observe the evolution of the sector, which involves the description of the restructuring and reforming of the industry since the disintegration of the Soviet Union. The current situation in aviation sector was shaped by number of reforms performed by Government of Russian Federation, which I describe in phases: conversion, privatization, decentralization, followed by evident desire of the state to establish control over some companies. Later on, I am trying to understand the reasons lying behind all reforms of 2000-2006 and the integration of the industry. I also try to predict which impacts on the companies it will have. The last part presents the main conclusions of the paper.
Resumo:
Shipping list no.: 89-297-P.
Resumo:
In academic literature, only limited research has been undertaken in exploring the value creation of B2B (Business-to-Business) e-Marketplace models in the aviation industry. The aim of this publication is a theoretical analysis to explore whether or not B2B e-Marketplaces can make a contribution to the achievement of competitive advantage in procurement in the aviation industry. The research focuses on the potential of B2B e-Marketplaces in terms of improving an airline’s competitiveness in its procurement value chain and discusses empirical results from a survey among international e-Marketplace / portal operators
Resumo:
The increasing need for maintenance, repair, and overhaul (MRO) organizations to meet customers' demands in quality and reduced lead times is key to its survival within the aviation industry. Furthermore, with the unpredictability in the global market and difficulties with forecasting characteristic of the MRO industry there is an increased need for the reevaluation of the operation models of organizations within this sector. However, severe economic turmoil and ever-increasing global competition introduce the opportunity for the adoption of a resilient, tried, and tested business operation model such as 'Lean'. In order to understand this concept, its long-term viability, and its application within the aerospace MRO sector fully, this paper presents the state-of-the-art in terms of the adoption of Lean within the MRO industry by carrying out a systematic review of the literature. This paper establishes the common perception of Lean by the MRO industry and the measurable progress that has been made on the subject. Some issues and challenges are also highlighted including the misconceptions that arise from the direct transference of the perception of Lean from other industrial sectors into the aerospace MRO industry. The 'enablers and inhibitors' of Lean within the aviation industry are also discussed. This paper exposes the scarcity of the literature and the general lagging behind of the industry to the adoption of the Lean paradigm and thus highlights areas where further research is required. © 2011 Authors.
Resumo:
The planning of airports has long been contentious because of their localisation of negative impacts. The globalisation, commercialisation and deregulation of the aviation industry has unleashed powerful new economic forces both on and offairport. Over the last two decades, many airports have evolved into airport cities located at the heart of the wider aerotropolis region. This shifts the appropriate scale of planning analysis towards broader regional concerns. However,governments have been slow to respond and airport planning usually remains poorly integrated with local, city and regional planning imperatives. The Australian experience exemplifies the divide. The privatization of major Australian airports from 1996 has seen billions of dollars spent on new airside and landside infrastructure but with little oversight from local and state authorities because the ultimate authority for on-airport development is the Federal Minister for Transport. Consequently, there have been growing tensions in many major airport regions between the private airport lessee and the broader community, exacerbated by both the building of highly conspicuous non-aeronautical developments and growing airport area congestion. This paper examines the urban planning content of Australia’s national aviation policy review (2008-09) with reference to current and potential opportunities for all-of-region collaboration in the planning process.
Resumo:
The air transport sector generates the largest share of cross-border consumer complaints, as a proportion of complaints received by the ECC-Net. Since the foundation of the ECC-Net in 2005, air passenger claims have made up around one fifth of the total caseload most years. A pan-European framework of bodies that handle consumer to business disputes will be implemented through the consumer ADR directive.4 Taking these developments into consideration, the aviation industry is an interesting sector to study. This paper looks at dispute resolution for air passengers in the United Kingdom (UK) and Germany, as well as at European level.
Resumo:
After a proliferation of logistics e-Marketplaces during the dot.com boom of 1998-2000, there has been a high rate of failure and survivals are developing much more slowly than expected. This is the case in the aviation industry where a large number of B2B e-Marketplaces emerged according to the focus of aviation companies’ strategies on electronic B2B in the late 1990s. However, the current use of e-Marketplaces in the industry is low and many of them have ceased trading. The traditional e-Marketplaces model has been characterised by poor quality portals and a lack of technical standards. Such an approach is unsustainable in today’s competitive scenario. Improvements in website quality attributes may strongly contribute to the simplification of website functionality by users and speed up communication with all supply chain partners. In this context, it appears critical to develop models for the evaluation of e-Marketplace web sites. This chapter, after a discussion about the development of e-Marketplaces in the transport and logistics service industry and its application in the aviation industry, proposes a multi-criteria model for assessing different types of aeronautic B2B e-Marketplaces.
Resumo:
With the increasing complexity of modern day threats and the growing sophistication of interlinked and interdependent operating environments, Business Continuity Management (BCM) has emerged as a new discipline, offering a strategic approach to safeguarding organisational functions. Of significant interest is the application of BCM frameworks and strategies within critical infrastructure, and in particular the aviation industry. Given the increased focus on security and safety for critical infrastructures, research into the adoption of BCM principles within an airport environment provides valuable management outcomes and research into a previously neglected area of inquisition. This research has used a single case study methodology to identify possible impediments to BCM adoption and implementation by the Brisbane Airport Corporation (BAC). It has identified a number of misalignments between the required breadth of focus for a BCM program, identified differing views on specific roles and responsibilities required during a major disruptive event and illustrated the complexities of the Brisbane Airport which impede the understanding and implementation of effective Business Continuity Management Strategies.
Resumo:
Operators of busy contemporary airports have to balance tensions between the timely flow of passengers, flight operations, the conduct of commercial business activities and the effective application of security processes. In addition to specific onsite issues airport operators liaise with a range of organisations which set and enforce aviation-related policies and regulations as well as border security agencies responsible for customs, quarantine and immigration, in addition to first response security services. The challenging demands of coordinating and planning in such complex socio-technical contexts place considerable pressure on airport management to facilitate coordination of what are often conflicting goals and expectations among groups that have standing in respect to safe and secure air travel. What are, as yet, significantly unexplored issues in large airports are options for the optimal coordination of efforts from the range of public and private sector participants active in airport security and crisis management. A further aspect of this issue is how airport management systems operate when there is a transition from business-as-usual into an emergency/crisis situation and then, on recovery, back to ‘normal’ functioning. Business Continuity Planning (BCP), incorporating sub-plans for emergency response, continuation of output and recovery of degraded operating capacity, would fit such a context. The implementation of BCP practices in such a significant high security setting offers considerable potential benefit yet entails considerable challenges. This paper presents early results of a 4 year nationally funded industry-based research project examining the merger of Business Continuity Planning and Transport Security Planning as a means of generating capability for improved security and reliability and, ultimately, enhanced resilience in major airports. The project is part of a larger research program on the Design of Secure Airports that includes most of the gazetted ‘first response’ international airports in Australia, key Aviation industry groups and all aviation-related border and security regulators as collaborative partners. The paper examines a number of initial themes in the research, including: ? Approaches to integrating Business Continuity & Aviation Security Planning within airport operations; ? Assessment of gaps in management protocols and operational capacities for identifying and responding to crises within and across critical aviation infrastructure; ? Identification of convergent and divergent approaches to crisis management used across Austral-Asia and their alignment to planned and possible infrastructure evolution.
Resumo:
A forced landing is an unscheduled event in flight requiring an emergency landing, and is most commonly attributed to engine failure, failure of avionics or adverse weather. Since the ability to conduct a successful forced landing is the primary indicator for safety in the aviation industry, automating this capability for unmanned aerial vehicles (UAVs) will help facilitate their integration into, and subsequent routine operations over civilian airspace. Currently, there is no commercial system available to perform this task; however, a team at the Australian Research Centre for Aerospace Automation (ARCAA) is working towards developing such an automated forced landing system. This system, codenamed Flight Guardian, will operate onboard the aircraft and use machine vision for site identification, artificial intelligence for data assessment and evaluation, and path planning, guidance and control techniques to actualize the landing. This thesis focuses on research specific to the third category, and presents the design, testing and evaluation of a Trajectory Generation and Guidance System (TGGS) that navigates the aircraft to land at a chosen site, following an engine failure. Firstly, two algorithms are developed that adapts manned aircraft forced landing techniques to suit the UAV planning problem. Algorithm 1 allows the UAV to select a route (from a library) based on a fixed glide range and the ambient wind conditions, while Algorithm 2 uses a series of adjustable waypoints to cater for changing winds. A comparison of both algorithms in over 200 simulated forced landings found that using Algorithm 2, twice as many landings were within the designated area, with an average lateral miss distance of 200 m at the aimpoint. These results present a baseline for further refinements to the planning algorithms. A significant contribution is seen in the design of the 3-D Dubins Curves planning algorithm, which extends the elementary concepts underlying 2-D Dubins paths to account for powerless flight in three dimensions. This has also resulted in the development of new methods in testing for path traversability, in losing excess altitude, and in the actual path formation to ensure aircraft stability. Simulations using this algorithm have demonstrated lateral and vertical miss distances of under 20 m at the approach point, in wind speeds of up to 9 m/s. This is greater than a tenfold improvement on Algorithm 2 and emulates the performance of manned, powered aircraft. The lateral guidance algorithm originally developed by Park, Deyst, and How (2007) is enhanced to include wind information in the guidance logic. A simple assumption is also made that reduces the complexity of the algorithm in following a circular path, yet without sacrificing performance. Finally, a specific method of supplying the correct turning direction is also used. Simulations have shown that this new algorithm, named the Enhanced Nonlinear Guidance (ENG) algorithm, performs much better in changing winds, with cross-track errors at the approach point within 2 m, compared to over 10 m using Park's algorithm. A fourth contribution is made in designing the Flight Path Following Guidance (FPFG) algorithm, which uses path angle calculations and the MacCready theory to determine the optimal speed to fly in winds. This algorithm also uses proportional integral- derivative (PID) gain schedules to finely tune the tracking accuracies, and has demonstrated in simulation vertical miss distances of under 2 m in changing winds. A fifth contribution is made in designing the Modified Proportional Navigation (MPN) algorithm, which uses principles from proportional navigation and the ENG algorithm, as well as methods specifically its own, to calculate the required pitch to fly. This algorithm is robust to wind changes, and is easily adaptable to any aircraft type. Tracking accuracies obtained with this algorithm are also comparable to those obtained using the FPFG algorithm. For all three preceding guidance algorithms, a novel method utilising the geometric and time relationship between aircraft and path is also employed to ensure that the aircraft is still able to track the desired path to completion in strong winds, while remaining stabilised. Finally, a derived contribution is made in modifying the 3-D Dubins Curves algorithm to suit helicopter flight dynamics. This modification allows a helicopter to autonomously track both stationary and moving targets in flight, and is highly advantageous for applications such as traffic surveillance, police pursuit, security or payload delivery. Each of these achievements serves to enhance the on-board autonomy and safety of a UAV, which in turn will help facilitate the integration of UAVs into civilian airspace for a wider appreciation of the good that they can provide. The automated UAV forced landing planning and guidance strategies presented in this thesis will allow the progression of this technology from the design and developmental stages, through to a prototype system that can demonstrate its effectiveness to the UAV research and operations community.
Resumo:
In recent years, development of Unmanned Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This thesis presents an investigation of methods for increasing the energy efficiency on UAVs. One method is via the development of a Mission Waypoint Optimisation (MWO) procedure for a small fixed-wing UAV, focusing on improving the onboard fuel economy. MWO deals with a pre-specified set of waypoints by modifying the given waypoints within certain limits to achieve its optimisation objectives of minimising/maximising specific parameters. A simulation model of a UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. This simulation model was separately integrated with a multi-objective Evolutionary Algorithm (MOEA) optimiser and a Sequential Quadratic Programming (SQP) solver to perform single-objective and multi-objective optimisation procedures of a set of real-world waypoints in order to minimise the onboard fuel consumption. The results of both procedures show potential in reducing fuel consumption on a UAV in a ight mission. Additionally, a parallel Hybrid-Electric Propulsion System (HEPS) on a small fixedwing UAV incorporating an Ideal Operating Line (IOL) control strategy was developed. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine was determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
Flexibility is a key driver of any successful design, specifically in highly unpredictable environment such as airport terminal. Ever growing aviation industry requires airport terminals to be planned and constructed in such a way that will allow flexibility for future design, alteration and redevelopment. The concept of flexibility in terminal design is a relatively new initiative, where existing rules or guidelines are not adequate to assist designers. A shift towards flexible design concept would allow terminal buildings to be designed to accommodate future changes and to make passengers’ journey as simple, timely and hassle free as possible. Currently available research indicates that a theoretical framework on flexible design approach for airport terminals would facilitate the future design process. The generic principles of flexibility are investigated in the current research to incorporate flexible design approaches within the process of an airport terminal design. A conceptual framework is proposed herein, which is expected to ascertain flexibility to current passenger terminal facilities within their corresponding locations as well as in future design and expansion.
Resumo:
Situation awareness lost is a common factor leading to human error in the aviation industry. However, few studies have investigated the effect on situation awareness where the control interface is a touch-screen device that supports simultaneous multi-touch input and information output. This research aims to conduct an experiment to evaluate the difference in situation awareness on a large screen device, DiamondTouch (DT107), and a small screen device, iPad, both with multi-touch interactive functions. The Interface Operation and Situation Awareness Testing Simulator (IOSATS), is a simulator to test the three basis interface operations (Search Target, Information Reading, and Change Detection) by implementing a simplified search and rescue scenario. The result of this experiment will provide reliable data for future research for improving operator's situation awareness in the avionic domain.
Resumo:
Flexible design concept is a relatively new trend in airport terminal design which is believed to facilitate the ever changing needs of a terminal. Current architectural design processes become more complex every day because of the introduction of new building technologies where the concept of flexible airport terminal would apparently make the design process even more complex. Previous studies have demonstrated that ever growing aviation industry requires airport terminals to be planned, designed and constructed in such a way that should allow flexibility in design process. In order to adopt the philosophy of ‘design for flexibility’ architects need to address a wide range of differing needs. An appropriate integration of the process models, prior to the airport terminal design process, is expected to uncover the relationships that exist between spatial layout and their corresponding functions. The current paper seeks to develop a way of sharing space adjacency related information obtained from the Business Process Models (BPM) to assist in defining flexible airport terminal layouts. Critical design parameters are briefly investigated at this stage of research whilst reviewing the available design alternatives and an evaluation framework is proposed in the current paper. Information obtained from various design layouts should assist in identifying and defining flexible design matrices allowing architects to interpret and to apply those throughout the lifecycle of the terminal building.