938 resultados para Autoregressive Integrated Moving Average
Resumo:
This paper applies Gaussian estimation methods to continuous time models for modelling overseas visitors into the UK. The use of continuous time modelling is widely used in economics and finance but not in tourism forecasting. Using monthly data for 1986–2010, various continuous time models are estimated and compared to autoregressive integrated moving average (ARIMA) and autoregressive fractionally integrated moving average (ARFIMA) models. Dynamic forecasts are obtained over different periods. The empirical results show that the ARIMA model performs very well, but that the constant elasticity of variance (CEV) continuous time model has the lowest root mean squared error (RMSE) over a short period.
Resumo:
Se analiza la manera en que se realizan las tesis doctorales en educación matemática en España. Se utiliza la metodología ARIMA (Auto-Regressive Integrated Moving Average) para realizar el análisis de manera diacrónica sobre datos longitudinales. Se hace incapié en la importancia de la metodología usada y sus ventajas frente a las metodologías tradicionalmente usadas en análisis diacrónicos. Se exponen las cuatro fases de la metodología ARIMA, correspondientes a la identificación del proceso, la estimación de cambio en el proceso, la validación del mismo y la predicción de sus consecuencias.
Resumo:
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.
Resumo:
A real-time operational methodology has been developed for multipurpose reservoir operation for irrigation and hydropower generation with application to the Bhadra reservoir system in the state of Karnataka, India. The methodology consists of three phases of computer modelling. In the first phase, the optimal release policy for a given initial storage and inflow is determined using a stochastic dynamic programming (SDP) model. Streamflow forecasting using an adaptive AutoRegressive Integrated Moving Average (ARIMA) model constitutes the second phase. A real-time simulation model is developed in the third phase using the forecast inflows of phase 2 and the operating policy of phase 1. A comparison of the optimal monthly real-time operation with the historical operation demonstrates the relevance, applicability and the relative advantage of the proposed methodology.
Resumo:
Research on assessment and monitoring methods has primarily focused on fisheries with long multivariate data sets. Less research exists on methods applicable to data-poor fisheries with univariate data sets with a small sample size. In this study, we examine the capabilities of seasonal autoregressive integrated moving average (SARIMA) models to fit, forecast, and monitor the landings of such data-poor fisheries. We use a European fishery on meagre (Sciaenidae: Argyrosomus regius), where only a short time series of landings was available to model (n=60 months), as our case-study. We show that despite the limited sample size, a SARIMA model could be found that adequately fitted and forecasted the time series of meagre landings (12-month forecasts; mean error: 3.5 tons (t); annual absolute percentage error: 15.4%). We derive model-based prediction intervals and show how they can be used to detect problematic situations in the fishery. Our results indicate that over the course of one year the meagre landings remained within the prediction limits of the model and therefore indicated no need for urgent management intervention. We discuss the information that SARIMA model structure conveys on the meagre lifecycle and fishery, the methodological requirements of SARIMA forecasting of data-poor fisheries landings, and the capabilities SARIMA models present within current efforts to monitor the world’s data-poorest resources.
Resumo:
Abundance indices derived from fishery-independent surveys typically exhibit much higher interannual variability than is consistent with the within-survey variance or the life history of a species. This extra variability is essentially observation noise (i.e. measurement error); it probably reflects environmentally driven factors that affect catchability over time. Unfortunately, high observation noise reduces the ability to detect important changes in the underlying population abundance. In our study, a noise-reduction technique for uncorrelated observation noise that is based on autoregressive integrated moving average (ARIMA) time series modeling is investigated. The approach is applied to 18 time series of finfish abundance, which were derived from trawl survey data from the U.S. northeast continental shelf. Although the a priori assumption of a random-walk-plus-uncorrelated-noise model generally yielded a smoothed result that is pleasing to the eye, we recommend that the most appropriate ARIMA model be identified for the observed time series if the smoothed time series will be used for further analysis of the population dynamics of a species.
Resumo:
The objective of this study was to evaluate the effects of antimicrobial drug use, gastric acid-suppressive agent use, and infection control practices on the incidence of Clostridium difficile-associated diarrhea (CDAD) in a 426-bed general teaching hospital in Northern Ireland. The study was retrospective and ecological in design. A multivariate autoregressive integrated moving average (time-series analysis) model was built to relate CDAD incidence with antibiotic use, gastric acid-suppressive agent use, and infection control practices within the hospital over a 5-year period (February 2002 to March 2007). The findings of this study showed that temporal variation in CDAD incidence followed temporal variations in expanded-spectrum cephalosporin use (average delay = 2 months; variation of CDAD incidence = 0.01/100 bed-days), broad-spectrum cephalosporin use (average delay = 2 months; variation of CDAD incidence = 0.02/100 bed-days), fluoroquinolone use (average delay = 3 months; variation of CDAD incidence = 0.004/100 bed-days), amoxicillin-clavulanic acid use (average delay = 1 month; variation of CDAD incidence = 0.002/100 bed-days), and macrolide use (average delay = 5 months; variation of CDAD incidence = 0.002/100 bed-days). Temporal relationships were also observed between CDAD incidence and use of histamine-2 receptor antagonists (H2RAs; average delay = 1 month; variation of CDAD incidence = 0.001/100 bed-days). The model explained 78% of the variance in the monthly incidence of CDAD. The findings of this study highlight a temporal relationship between certain classes of antibiotics, H2RAs, and CDAD incidence. The results of this research can help hospitals to set priorities for restricting the use of specific antibiotic classes, based on the size-effect of each class and the delay necessary to observe an effect.
Resumo:
Aims: The objective of the present study was to study the relationship between hospital antibiotic use, community antibiotic use and the incidence of extended-spectrum beta-lactamase (ESBL)-producing bacteria in hospitals, while assessing the impact of a fluoroquinolone restriction policy on ESBL-producing bacteria incidence rates. METHODS: The study was retrospective and ecological in design. A multivariate autoregressive integrated moving average (ARIMA) model was built to relate antibiotic use to ESB-producing bacteria incidence rates and resistance patterns over a 5 year period (January 2005-December 2009). Results: Analysis showed that the hospital incidence of ESBLs had a positive relationship with the use of fluoroquinolones in the hospital (coefficient = 0.174, P= 0.02), amoxicillin-clavulanic acid in the community (coefficient = 1.03, P= 0.03) and mean co-morbidity scores for hospitalized patients (coefficient = 2.15, P= 0.03) with various time lags. The fluoroquinolone restriction policy was implemented successfully with the mean use of fluoroquinolones (mainly ciprofloxacin) being reduced from 133 to 17 defined daily doses (DDDs)/1000 bed days (P <0.001) and from 0.65 to 0.54 DDDs/1000 inhabitants/day (P= 0.0007), in both the hospital and its surrounding community, respectively. This was associated with an improved ciprofloxacin susceptibility in both settings [ciprofloxacin susceptibility being improved from 16% to 28% in the community (P <0.001)] and with a statistically significant reduction in ESBL-producing bacteria incidence rates. Discussion: This study supports the value of restricting the use of certain antimicrobial classes to control ESBL, and demonstrates the feasibility of reversing resistance patterns post successful antibiotic restriction. The study also highlights the potential value of the time-series analysis in designing efficient antibiotic stewardship. © 2011 The Authors. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.
Resumo:
SUMMARY The objective of this study was to evaluate the effect of age-adjusted comorbidity and alcohol-based hand rub on monthly hospital antibiotic usage, retrospectively. A multivariate autoregressive integrated moving average (ARIMA) model was built to relate the monthly use of all antibiotics grouped together with age-adjusted comorbidity and alcohol-based hand rub over a 5-year period (April 2005-March 2010). The results showed that monthly antibiotic use was positively related to the age-adjusted comorbidity index (concomitant effect, coefficient 1·103, P = 0·0002), and negatively related to the use of alcohol-based hand rub (2-month delay, coefficient -0·069, P = 0·0533). Alcohol-based hand rub is considered a modifiable factor and as such can be identified as a target for quality improvement programmes. Time-series analysis may provide a suitable methodology for identifying possible predictive variables that explain antibiotic use in healthcare settings. Future research should examine the relationship between infection control practices and antibiotic use, identify other infection control predictive factors for hospital antibiotic use, and evaluate the impact of enhancing different infection control practices on antibiotic use in a healthcare setting.
Resumo:
Robert Bourbeau, département de démographie (Directeur de recherche) Marianne Kempeneers, département de sociologie (Codirectrice de recherche)
Resumo:
Data from various stations having different measurement record periods between 1988 and 2007 are analyzed to investigate the surface ozone concentration, long-term trends, and seasonal changes in and around Ireland. Time series statistical analysis is performed on the monthly mean data using seasonal and trend decomposition procedures and the Box-Jenkins approach (autoregressive integrated moving average). In general, ozone concentrations in the Irish region are found to have a negative trend at all sites except at the coastal sites of Mace Head and Valentia. Data from the most polluted Dublin city site have shown a very strong negative trend of −0.33 ppb/yr with a 95% confidence limit of 0.17 ppb/yr (i.e., −0.33 ± 0.17) for the period 2002−2007, and for the site near the city of Cork, the trend is found to be −0.20 ± 0.11 ppb/yr over the same period. The negative trend for other sites is more pronounced when the data span is considered from around the year 2000 to 2007. Rural sites of Wexford and Monaghan have also shown a very strong negative trend of −0.99 ± 0.13 and −0.58 ± 0.12, respectively, for the period 2000−2007. Mace Head, a site that is representative of ozone changes in the air advected from the Atlantic to Europe in the marine planetary boundary layer, has shown a positive trend of about +0.16 ± 0.04 ppb per annum over the entire period 1988−2007, but this positive trend has reduced during recent years (e.g., in the period 2001−2007). Cluster analysis for back trajectories are performed for the stations having a long record of data, Mace Head and Lough Navar. For Mace Head, the northern and western clean air sectors have shown a similar positive trend (+0.17 ± 0.02 ppb/yr for the northern sector and +0.18 ± 0.02 ppb/yr for the western sector) for the whole period, but partial analysis for the clean western sector at Mace Head shows different trends during different time periods with a decrease in the positive trend since 1988 indicating a deceleration in the ozone trend for Atlantic air masses entering Europe.
Resumo:
The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by elemental analysis and (13)C Nuclear Magnetic Resonance ((13)C NMR). This article reports a study of six sediment cores collected at different depths and regions of Todos os Santos Bay. The elemental profiles of cores collected on the eastern side of Frades Island suggest an abrupt change in the sedimentation regime. Auto-regressive Integrated Moving Average (ARIMA) analysis corroborates this result. The range of depths of the cores corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects in the region. Principal Component Analysis of the (13)C NMR spectra clearly differentiates sediment samples closer to the Subae estuary, which have high contents of terrestrial organic matter, from those closer to a local oil refinery. The results presented in this article illustrate several important aspects of environmental impact of human activity on this bay. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Ghana faces a macroeconomic problem of inflation for a long period of time. The problem in somehow slows the economic growth in this country. As we all know, inflation is one of the major economic challenges facing most countries in the world especially those in African including Ghana. Therefore, forecasting inflation rates in Ghana becomes very important for its government to design economic strategies or effective monetary policies to combat any unexpected high inflation in this country. This paper studies seasonal autoregressive integrated moving average model to forecast inflation rates in Ghana. Using monthly inflation data from July 1991 to December 2009, we find that ARIMA (1,1,1)(0,0,1)12 can represent the data behavior of inflation rate in Ghana well. Based on the selected model, we forecast seven (7) months inflation rates of Ghana outside the sample period (i.e. from January 2010 to July 2010). The observed inflation rate from January to April which was published by Ghana Statistical Service Department fall within the 95% confidence interval obtained from the designed model. The forecasted results show a decreasing pattern and a turning point of Ghana inflation in the month of July.
Resumo:
Uma aplicação distribuída freqüentemente tem que ser especificada e implementada para executar sobre uma rede de longa distância (wide-área network-WAN), tipicamente a Internet. Neste ambiente, tais aplicações são sujeitas a defeitos do tipo colapso(falha geral num dado nó), teporização (flutuações na latência de comunicação) e omissão (perdas de mensagens). Para evitar que este defeitos gerem comseqüências indesejáveis e irreparáveis na aplicação, explora-se técnicas para tolerá-los. A abstração de detectores de defeitos não confiáveis auxilia a especificação e trato de algoritmos distribuídos utilizados em sistemas tolerantes a falhas, pois permite uma modelagem baseada na noção de estado (suspeito ou não suspeito) dos componentes (objetos, processo ou processadores) da aplicação. Para garantir terminação, os algoritmos de detecção de defeitos costumam utilizar a noção de limites de tempo de espera (timeout). Adicionalmente, para minimizar seu erro (falasas suspeitas) e não comprometer seu desempenho (tempo para detecção de um defeito), alguns detectores de defeitos ajustam dinamicamente o timeout com base em previsões do atraso de comunicação. Esta tese explora o ajuste dinâmico do timeout realizado de acordo com métodos de previsão baseados na teoria de séries temporais. Tais métodos supõem uma amostragem periódica e fornececm estimativas relativamente confiáveis do comportamento futuro da variável aleatória. Neste trabalho é especificado uma interface para transformar uma amostragem aperiódica do atraso de ida e volta de uma mensagem (rtt) numa amostragem periódica, é analisado comportamento de séries reais do rtt e a precisão dee sete preditores distintos (três baseados em séries temporais e quatrro não), e é avaliado a influência destes preditores na qualidade de serviço de um detector de defeitos do estilopull. Uma arquitetura orientada a objetos que possibilita a escolha/troca de algoritmos de previsão e de margem de segurança é também proposta. Como resultado, esta tese mostra: (i) que embora a amostragem do rtt seja aperiódica, pode-se modelá-la como sendo uma série temporal (uma amostragem periódica) aplciando uma interface de transformação; (ii) que a série temporal rtt é não estacionária na maioria dos casos de teste, contradizendo a maioria das hipóteses comumente consideradas em detectores de defeitos; (iii) que dentre sete modelos de predição, o modelo ARIMA (autoregressive integrated moving-average model) é o que oferece a melhor precisão na predição de atrasos de comunicação, em termos do erro quadrático médio: (iv) que o impacto de preditores baseados em séries temporais na qualidade de serviço do detector de defeitos não significativo em relação a modelos bem mais simples, mas varia dependendo da margem de segurança adotada; e (v) que um serviço de detecção de defeitos pode possibilitar a fácil escolha de algoritmos de previsão e de margens de segurança, pois o preditor pode ser modelado como sendo um módulo dissociado do detector.