989 resultados para Automotive process


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this article is to apply the Design of experiments technique along with the Discrete Events Simulation technique in an automotive process. The benefits of the design of experiments in simulation include the possibility to improve the performance in the simulation process, avoiding trial and error to seek solutions. The methodology of the conjoint use of Design of Experiments and Computer Simulation is presented to assess the effects of the variables and its interactions involved in the process. In this paper, the efficacy of the use of process mapping and design of experiments on the phases of conception and analysis are confirmed. © 2007 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this article is to apply the Design of Experiments technique along with the Discrete Events Simulation technique in an automotive process. The benefits of the design of experiments in simulation include the possibility to improve the performance in the simulation process, avoiding trial and error to seek solutions. The methodology of the conjoint use of Design of Experiments and Computer Simulation is presented to assess the effects of the variables and its interactions involved in the process. In this paper, the efficacy of the use of process mapping and design of experiments on the phases of conception and analysis are confirmed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of multiphase steels with high strength and improved toughness or ductility, such as intercritically annealed dual-phase (DP) and transformation-induced plasticity (TRIP) steels, is of key importance to the automotive industry. In this work we have considered the entire manufacturing process and the effects of this on the final product performance. These steels are formed to produce the required final shape and then the car is paint baked. In this work we also consider the effect of cold working and bake hardening on the fatigue life of the components.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Automotive parts manufacture by machining process using silicon nitride-based ceramic tool development in Brazil already is a reality. Si 3N4-based ceramic cutting tools offer a high productivity due to their excellent hot hardness, which allows high cutting speeds. Under such conditions the cutting tool must be resistant to a combination of mechanical, thermal and chemical attacks. Silicon nitride based ceramic materials constitute a mature technology with a very broad base of current and potential applications. The best opportunities for Si3N 4-based ceramics include ballistic armor, composite automotive brakes, diesel particulate filters, joint replacement products and others. The goal of this work was to show latter advance in silicon nitride manufacture and its recent evolution on machining process of gray cast iron, compacted graphite iron and Ti-6Al-4V. Materials characterization and machining tests were analyzed by X-Ray Diffraction, Scanning Electron Microscopy, Vickers hardness and toughness fracture and technical norm. In recent works the authors has been proved to advance in microstructural, mechanical and physic properties control. These facts prove that silicon nitride-based ceramic has enough resistance to withstand the impacts inherent to the machining of gray cast iron (CI), compacted graphite iron (CGI) and Ti-6Al-4V (6-4). Copyright © 2008 SAE International.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study is to demonstrate the appropriateness of “Japanese Manufacturing Management” (JMM) strategies in the Asian, ASEAN and Australasian automotive sectors. Secondly, the study assessed JMM as a prompt, effective and efficient global manufacturing management practice for automotive manufacturing companies to learn; benchmark for best practice; acquire product and process innovation, and enhance their capabilities and capacities. In this study, the philosophies, systems and tools that have been adopted in various automotive manufacturing assembly plants and their tier 1 suppliers in the three Regions were examined. A number of top to middle managers in these companies were located in Thailand, Indonesia, Malaysia, Singapore, Philippines, Viet Nam, and Australia and were interviewed by using a qualitative methodology. The results confirmed that the six pillars of JMM (culture change, quality at shop floor, consensus, incremental continual improvement, benchmarking, and backward-forward integration) are key enablers to success in adopting JMM in both automotive and other manufacturing sectors in the three Regions. The analysis and on-site interviews identified a number of recommendations that were validated by the automotive manufacturing company’s managers as the most functional JMM strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important aspect of designing any product is validation. Virtual design process (VDP) is an alternative to hardware prototyping in which analysis of designs can be done without manufacturing physical samples. In recent years, VDP have been generated either for animation or filming applications. This paper proposes a virtual reality design process model on one of the applications when used as a validation tool. This technique is used to generate a complete design guideline and validation tool of product design. To support the design process of a product, a virtual environment and VDP method were developed that supports validation and an initial design cycle performed by a designer. The product model car carrier is used as illustration for which virtual design was generated. The loading and unloading sequence of the model for the prototype was generated using automated reasoning techniques and was completed by interactively animating the product in the virtual environment before complete design was built. By using the VDP process critical issues like loading, unloading, Australian Design rules (ADR) and clearance analysis were done. The process would save time, money in physical sampling and to large extent in complete math generation. Since only schematic models are required, it saves time in math modelling and handling of bigger size assemblies due to complexity of the models. This extension of VDP process for design evaluation is unique and was developed, implemented successfully. In this paper a Toll logistics and J Smith and Sons car carrier which is developed under author’s responsibility has been used to illustrate our approach of generating design validation via VDP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Falling sales in Europe and increasing global competition is forcing automotive manufacturers to develop a customer-based approach to differentiate themselves from the similarly technologically-optimised crowd. In spite of this new approach, automotive firms are still firmly entrenched in their reliance upon technology-driven innovation, to design, develop and manufacture their products, placing customer focus on a downstream sales role. However the time-honoured technology-driven approach to vehicle design and manufacture is coming into question, with the increasing importance of accounting for consumer needs pushing automotive engineers to include the user in their designs. The following paper examines the challenges and opportunities for a single global automotive manufacturer that arise in seeking to adopt a user-centred approach to vehicle design amongst technical employees. As part of an embedded case study, engineers from this manufacturer were interviewed in order to gauge the challenges, barriers and opportunities for the adoption of user-centred design tools within the engineering design process. The analysis of these interviews led to the proposal of the need for a new role within automotive manufacturers, the “designeer”, to bridge the divide between designers and engineers and allow the engineering process to transition from a technology-driven to a user- centred approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an industry worth more than €500 billion annually, producing more than 80 million vehicles worldwide each year and consisting of over 50 major manufacturers worldwide, the automotive industry represents a lucrative but highly competitive manufacturing industry (Deloitte, 2009a; European Automobile Manufacturers Association, 2012). With sales falling in Europe in 2013 for the sixth consecutive year (Boston and Curtin, 2014), automotive manufacturers are increasingly turning to new strategies to retain their share of sales in a contracting market. Some strategies have focused on the industry approach to manufacturing, namely, a technically focused push for a build-toorder process rather than the current build-to-stock approach in order to reduce overall value-chain costs and to increase efficiency (Parry and Roehrich, 2013, p. 13). However, others stress a more customer-orientated approach, striving to develop products that meet customer requirements (Oliver Wyman Group, 2007).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the use of liaison to better integrate product model and assembly process model so as to enable sharing of design and assembly process information in a common integrated form and reason about them. Liaison can be viewed as a set, usually a pair, of features in proximity with which process information can be associated. A liaison is defined as a set of geometric entities on the parts being assembled and relations between these geometric entities. Liaisons have been defined for riveting, welding, bolt fastening, screw fastening, adhesive bonding (gluing) and blind fastening processes. The liaison captures process specific information through attributes associated with it. The attributes are associated with process details at varying levels of abstraction. A data structure for liaison has been developed to cluster the attributes of the liaison based on the level of abstraction. As information about the liaisons is not explicitly available in either the part model or the assembly model, algorithms have been developed for extracting liaisons from the assembly model. The use of liaison is proposed to enable both the construction of process model as the product model is fleshed out, as well as maintaining integrity of both product and process models as the inevitable changes happen to both design and the manufacturing environment during the product lifecycle. Results from aerospace and automotive domains have been provided to illustrate and validate the use of liaisons. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a recent surge of enthusiasm icithin tlie automotive industry to build closer supplier relationships idthin the area of product development. One concept deemed central to these relationships is the alignment of development processes between the collaborating organizations, an area that is expanded upon idthin this paper. We suggest that synchronization can be achieved through the four key steps of process standardization, knowledge sliaring, alignment of existing practices, and continuous elimination oftcaste idthin the joint development cycles. A methodology for implementing these stages is presented along idth the underlying prindples on which it is based - the importance of joint teamworking and multi-company involvement idthin the alignment process is higlilighted. © MCB University Press.