908 resultados para Automatic Vehicles.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transportation Department, Secretary of Transportation, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Federal Highway Administration, Office of Safety and Traffic Operations, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acoustically, car cabins are extremely noisy and as a consequence, existing audio-only speech recognition systems, for voice-based control of vehicle functions such as the GPS based navigator, perform poorly. Audio-only speech recognition systems fail to make use of the visual modality of speech (eg: lip movements). As the visual modality is immune to acoustic noise, utilising this visual information in conjunction with an audio only speech recognition system has the potential to improve the accuracy of the system. The field of recognising speech using both auditory and visual inputs is known as Audio Visual Speech Recognition (AVSR). Continuous research in AVASR field has been ongoing for the past twenty-five years with notable progress being made. However, the practical deployment of AVASR systems for use in a variety of real-world applications has not yet emerged. The main reason is due to most research to date neglecting to address variabilities in the visual domain such as illumination and viewpoint in the design of the visual front-end of the AVSR system. In this paper we present an AVASR system in a real-world car environment using the AVICAR database [1], which is publicly available in-car database and we show that the use of visual speech conjunction with the audio modality is a better approach to improve the robustness and effectiveness of voice-only recognition systems in car cabin environments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study presents a disturbance attenuation controller for horizontal position stabilisation for hover and automatic landings of a rotary-wing unmanned aerial vehicle (RUAV) operating close to the landing deck in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a non-linear state feedback H∞ controller is designed to achieve rapid horizontal position tracking in a gusty environment. Practical constraints including flapping dynamics, servo dynamics and time lag effect are considered. A high-fidelity closed-loop simulation using parameters of the Vario XLC gas-turbine helicopter verifies performance of the proposed horizontal position controller. The proposed controller not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H∞ controller exhibits performance improvement and can be applied to ship/RUAV landing systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is known that the techniques under the topic of Soft Computing have a strong capability of learning and cognition, as well as a good tolerance to uncertainty and imprecision. Due to these properties they can be applied successfully to Intelligent Vehicle Systems; ITS is a broad range of technologies and techniques that hold answers to many transportation problems. The unmannedcontrol of the steering wheel of a vehicle is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle; to reach it, information about the car state while a human driver is handling the car is taken and used to adjust, via iterative geneticalgorithms an appropriated fuzzy controller. To evaluate the obtained controllers, it will be considered the performance obtained in the track following task, as well as the smoothness of the driving carried out.