996 resultados para Automatic Construction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We detail the automatic construction of R matrices corresponding to (the tensor products of) the (O-m\alpha(n)) families of highest-weight representations of the quantum superalgebras Uq[gl(m\n)]. These representations are irreducible, contain a free complex parameter a, and are 2(mn)-dimensional. Our R matrices are actually (sparse) rank 4 tensors, containing a total of 2(4mn) components, each of which is in general an algebraic expression in the two complex variables q and a. Although the constructions are straightforward, we describe them in full here, to fill a perceived gap in the literature. As the algorithms are generally impracticable for manual calculation, we have implemented the entire process in MATHEMATICA; illustrating our results with U-q [gl(3\1)]. (C) 2002 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to evaluate the efficacy of the application WebBootCaT to create specialised corpora automatically, investigating the translation of articles of association from Italian into English. The first section reflects on the relevant literature and proposes the utility of corpora for translators. The second section discusses the methodology employed, and the third section analyses the results obtained and comments on how language professionals could possibly exploit the application to its full. The fourth section provides a few concrete usage examples of the thus built corpora, to then conclude that WebBootCaT is a genuinely powerful tool that could be implemented by professional translators in order to save time and improve their translations in the long term.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis concerns artificially intelligent natural language processing systems that are capable of learning the properties of lexical items (properties like verbal valency or inflectional class membership) autonomously while they are fulfilling their tasks for which they have been deployed in the first place. Many of these tasks require a deep analysis of language input, which can be characterized as a mapping of utterances in a given input C to a set S of linguistically motivated structures with the help of linguistic information encoded in a grammar G and a lexicon L: G + L + C → S (1) The idea that underlies intelligent lexical acquisition systems is to modify this schematic formula in such a way that the system is able to exploit the information encoded in S to create a new, improved version of the lexicon: G + L + S → L' (2) Moreover, the thesis claims that a system can only be considered intelligent if it does not just make maximum usage of the learning opportunities in C, but if it is also able to revise falsely acquired lexical knowledge. So, one of the central elements in this work is the formulation of a couple of criteria for intelligent lexical acquisition systems subsumed under one paradigm: the Learn-Alpha design rule. The thesis describes the design and quality of a prototype for such a system, whose acquisition components have been developed from scratch and built on top of one of the state-of-the-art Head-driven Phrase Structure Grammar (HPSG) processing systems. The quality of this prototype is investigated in a series of experiments, in which the system is fed with extracts of a large English corpus. While the idea of using machine-readable language input to automatically acquire lexical knowledge is not new, we are not aware of a system that fulfills Learn-Alpha and is able to deal with large corpora. To instance four major challenges of constructing such a system, it should be mentioned that a) the high number of possible structural descriptions caused by highly underspeci ed lexical entries demands for a parser with a very effective ambiguity management system, b) the automatic construction of concise lexical entries out of a bulk of observed lexical facts requires a special technique of data alignment, c) the reliability of these entries depends on the system's decision on whether it has seen 'enough' input and d) general properties of language might render some lexical features indeterminable if the system tries to acquire them with a too high precision. The cornerstone of this dissertation is the motivation and development of a general theory of automatic lexical acquisition that is applicable to every language and independent of any particular theory of grammar or lexicon. This work is divided into five chapters. The introductory chapter first contrasts three different and mutually incompatible approaches to (artificial) lexical acquisition: cue-based queries, head-lexicalized probabilistic context free grammars and learning by unification. Then the postulation of the Learn-Alpha design rule is presented. The second chapter outlines the theory that underlies Learn-Alpha and exposes all the related notions and concepts required for a proper understanding of artificial lexical acquisition. Chapter 3 develops the prototyped acquisition method, called ANALYZE-LEARN-REDUCE, a framework which implements Learn-Alpha. The fourth chapter presents the design and results of a bootstrapping experiment conducted on this prototype: lexeme detection, learning of verbal valency, categorization into nominal count/mass classes, selection of prepositions and sentential complements, among others. The thesis concludes with a review of the conclusions and motivation for further improvements as well as proposals for future research on the automatic induction of lexical features.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes the EvoBANE system. EvoBANE automatically generates Bayesian networks for solving special-purpose problems. EvoBANE evolves a population of individuals that codify Bayesian networks until it finds near optimal individual that solves a given classification problem. EvoBANE has the flexibility to modify the constraints that condition the solution search space, self-adapting to the specifications of the problem to be solved. The system extends the GGEAS architecture. GGEAS is a general-purpose grammar-guided evolutionary automatic system, whose modular structure favors its application to the automatic construction of intelligent systems. EvoBANE has been applied to two classification benchmark datasets belonging to different application domains, and statistically compared with a genetic algorithm performing the same tasks. Results show that the proposed system performed better, as it manages different complexity constraints in order to find the simplest solution that best solves every problem.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ontologies have become a key component in the Semantic Web and Knowledge management. One accepted goal is to construct ontologies from a domain specific set of texts. An ontology reflects the background knowledge used in writing and reading a text. However, a text is an act of knowledge maintenance, in that it re-enforces the background assumptions, alters links and associations in the ontology, and adds new concepts. This means that background knowledge is rarely expressed in a machine interpretable manner. When it is, it is usually in the conceptual boundaries of the domain, e.g. in textbooks or when ideas are borrowed into other domains. We argue that a partial solution to this lies in searching external resources such as specialized glossaries and the internet. We show that a random selection of concept pairs from the Gene Ontology do not occur in a relevant corpus of texts from the journal Nature. In contrast, a significant proportion can be found on the internet. Thus, we conclude that sources external to the domain corpus are necessary for the automatic construction of ontologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O principal objectivo da animação de personagens virtuais é o de contar uma história através da utilização de personagens virtuais emocionalmente expressivos. Os personagens têm personalidades distintas, e transmitem as suas emoções e processos de pensamento através dos seus comportamentos (comunicação não verbal). As suas acções muitas das vezes constituem a geração de movimentos corporais complexos. Existem diversas questões a considerar quando se anima uma entidade complexa, tais como, a posição das zonas móveis e as suas velocidades. Os personagens virtuais são um exemplo de entidades complexas e estão entre os elementos mais utilizados em animação computacional. O foco desta dissertação consistiu na criação de uma proposta de sistema de animação de personagens virtuais, cujos movimentos e expressões faciais são capazes de transmitir emoções e estados de espírito. Os movimentos primários, ou seja os movimentos que definem o comportamento dos personagens, são provenientes da captura de movimentos humanos (Motion Capture). As animações secundárias, tais como as expressões faciais, são criadas em Autodesk Maya recorrendo à técnica BlendShapes. Os dados obtidos pela captura de movimentos, são organizados numa biblioteca de comportamentos através de um grafo de movimentos, conhecido por Move Tree. Esta estrutura permite o controlo em tempo real dos personagens através da gestão do estado dos personagens. O sistema possibilita também a transição eficaz entre movimentos semelhantes e entre diferentes velocidades de locomoção, minimizando o efeito de arrastamento de pés conhecido como footskate. Torna-se assim possível definir um trajecto que o personagem poderá seguir com movimentos suaves. Estão também disponíveis os resultados obtidos nas sessões de avaliação realizadas, que visaram a determinação da qualidade das transições entre animações. Propõem-se ainda o melhoramento do sistema através da implementação da construção automática do grafo de movimentos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Doctoral Program in Computer Science

Relevância:

60.00% 60.00%

Publicador:

Resumo:

És ben sabut que les úniques etapes del cicle de vida del programari que necessàriament s'han d'especificar són les de recollida de requisits i l'anàlisi o l'especificació del programari. La resta (disseny, implementació i prova) es pot generar d'una manera més o menys automàtica a partir de l'anàlisi. En aquest PFC hem volgut estudiar la viabilitat de la construcció automàtica de codi SQL a partir de diagrames de classes d'anàlisi UML. S'ha estès l'eina de modelatge UML Poseidon amb un connector, de manera que amb una interfície molt simple es pot obtenir molt ràpidament l'esquema bàsic d'una base de dades, incloent-hi les taules, les seves columnes, claus rimàries i foranes, i també els disparadors (i les claus úniques) necessaris per a garantir les restriccions de cardinalitat de les associacions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Construction of multiple sequence alignments is a fundamental task in Bioinformatics. Multiple sequence alignments are used as a prerequisite in many Bioinformatics methods, and subsequently the quality of such methods can be critically dependent on the quality of the alignment. However, automatic construction of a multiple sequence alignment for a set of remotely related sequences does not always provide biologically relevant alignments.Therefore, there is a need for an objective approach for evaluating the quality of automatically aligned sequences. The profile hidden Markov model is a powerful approach in comparative genomics. In the profile hidden Markov model, the symbol probabilities are estimated at each conserved alignment position. This can increase the dimension of parameter space and cause an overfitting problem. These two research problems are both related to conservation. We have developed statistical measures for quantifying the conservation of multiple sequence alignments. Two types of methods are considered, those identifying conserved residues in an alignment position, and those calculating positional conservation scores. The positional conservation score was exploited in a statistical prediction model for assessing the quality of multiple sequence alignments. The residue conservation score was used as part of the emission probability estimation method proposed for profile hidden Markov models. The results of the predicted alignment quality score highly correlated with the correct alignment quality scores, indicating that our method is reliable for assessing the quality of any multiple sequence alignment. The comparison of the emission probability estimation method with the maximum likelihood method showed that the number of estimated parameters in the model was dramatically decreased, while the same level of accuracy was maintained. To conclude, we have shown that conservation can be successfully used in the statistical model for alignment quality assessment and in the estimation of emission probabilities in the profile hidden Markov models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The storage and processing capacity realised by computing has lead to an explosion of data retention. We now reach the point of information overload and must begin to use computers to process more complex information. In particular, the proposition of the Semantic Web has given structure to this problem, but has yet realised practically. The largest of its problems is that of ontology construction; without a suitable automatic method most will have to be encoded by hand. In this paper we discus the current methods for semi and fully automatic construction and their current shortcomings. In particular we pay attention the application of ontologies to products and the particle application of the ontologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A correlação estratigráfica busca a determinação da continuidade lateral das rochas, ou a equivalência espacial entre unidades litológicas em subsuperfície, a partir de informações geológico-geofísicas oriundas de poços tubulares, que atravessam estas rochas. Normalmente, mas não exclusivamente, a correlação estratigráfica é realizada a partir das propriedades físicas registradas nos perfis geofísicos de poço. Neste caso, busca-se a equivalência litológica a partir da equivalência entre as propriedades físicas, medidas nos vários poços de um campo petrolífero. A técnica da correlação estratigráfica com perfis geofísicos de poço não é uma atividade trivial e sim, sujeita a inúmeras possibilidades de uma errônea interpretação da disposição geométrica ou da continuidade lateral das rochas em subsuperfície, em função da variabilidade geológica e da ambigüidade das respostas das ferramentas. Logo, é recomendável a utilização de um grande número de perfis de um mesmo poço, para uma melhor interpretação. A correlação estratigráfica é fundamental para o engenheiro de reservatório ou o geólogo, pois a partir da mesma, é possível a definição de estratégias de explotação de um campo petrolífero e a interpretação das continuidades hidráulicas dos reservatórios, bem como auxílio para a construção do modelo geológico para os reservatórios, a partir da interpretação do comportamento estrutural das diversas camadas em subsuperfície. Este trabalho apresenta um método de automação das atividades manuais envolvidas na correlação estratigráfica, com a utilização de vários perfis geofísicos de poço, através de uma arquitetura de rede neural artificial multicamadas, treinada com o algoritmo de retropropagação do erro. A correlação estratigráfica, obtida a partir da rede neural artificial, possibilita o transporte da informação geológica do datum de correlação ao longo do campo, possibilitando ao intérprete, uma visão espacial do comportamento do reservatório e a simulação dos possíveis paleoambientes. Com a metodologia aqui apresentada foi possível a construção automática de um bloco diagrama, mostrando a disposição espacial de uma camada argilosa, utilizando-se os perfis de Raio Gama (RG), Volume de Argila (Vsh), Densidade (ρb) e de Porosidade Neutrônica (φn) selecionados em cinco poços da região do Lago Maracaibo, na Venezuela.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La tesis que se presenta tiene como propósito la construcción automática de ontologías a partir de textos, enmarcándose en el área denominada Ontology Learning. Esta disciplina tiene como objetivo automatizar la elaboración de modelos de dominio a partir de fuentes información estructurada o no estructurada, y tuvo su origen con el comienzo del milenio, a raíz del crecimiento exponencial del volumen de información accesible en Internet. Debido a que la mayoría de información se presenta en la web en forma de texto, el aprendizaje automático de ontologías se ha centrado en el análisis de este tipo de fuente, nutriéndose a lo largo de los años de técnicas muy diversas provenientes de áreas como la Recuperación de Información, Extracción de Información, Sumarización y, en general, de áreas relacionadas con el procesamiento del lenguaje natural. La principal contribución de esta tesis consiste en que, a diferencia de la mayoría de las técnicas actuales, el método que se propone no analiza la estructura sintáctica superficial del lenguaje, sino que estudia su nivel semántico profundo. Su objetivo, por tanto, es tratar de deducir el modelo del dominio a partir de la forma con la que se articulan los significados de las oraciones en lenguaje natural. Debido a que el nivel semántico profundo es independiente de la lengua, el método permitirá operar en escenarios multilingües, en los que es necesario combinar información proveniente de textos en diferentes idiomas. Para acceder a este nivel del lenguaje, el método utiliza el modelo de las interlinguas. Estos formalismos, provenientes del área de la traducción automática, permiten representar el significado de las oraciones de forma independiente de la lengua. Se utilizará en concreto UNL (Universal Networking Language), considerado como la única interlingua de propósito general que está normalizada. La aproximación utilizada en esta tesis supone la continuación de trabajos previos realizados tanto por su autor como por el equipo de investigación del que forma parte, en los que se estudió cómo utilizar el modelo de las interlinguas en las áreas de extracción y recuperación de información multilingüe. Básicamente, el procedimiento definido en el método trata de identificar, en la representación UNL de los textos, ciertas regularidades que permiten deducir las piezas de la ontología del dominio. Debido a que UNL es un formalismo basado en redes semánticas, estas regularidades se presentan en forma de grafos, generalizándose en estructuras denominadas patrones lingüísticos. Por otra parte, UNL aún conserva ciertos mecanismos de cohesión del discurso procedentes de los lenguajes naturales, como el fenómeno de la anáfora. Con el fin de aumentar la efectividad en la comprensión de las expresiones, el método provee, como otra contribución relevante, la definición de un algoritmo para la resolución de la anáfora pronominal circunscrita al modelo de la interlingua, limitada al caso de pronombres personales de tercera persona cuando su antecedente es un nombre propio. El método propuesto se sustenta en la definición de un marco formal, que ha debido elaborarse adaptando ciertas definiciones provenientes de la teoría de grafos e incorporando otras nuevas, con el objetivo de ubicar las nociones de expresión UNL, patrón lingüístico y las operaciones de encaje de patrones, que son la base de los procesos del método. Tanto el marco formal como todos los procesos que define el método se han implementado con el fin de realizar la experimentación, aplicándose sobre un artículo de la colección EOLSS “Encyclopedia of Life Support Systems” de la UNESCO. ABSTRACT The purpose of this thesis is the automatic construction of ontologies from texts. This thesis is set within the area of Ontology Learning. This discipline aims to automatize domain models from structured or unstructured information sources, and had its origin with the beginning of the millennium, as a result of the exponential growth in the volume of information accessible on the Internet. Since most information is presented on the web in the form of text, the automatic ontology learning is focused on the analysis of this type of source, nourished over the years by very different techniques from areas such as Information Retrieval, Information Extraction, Summarization and, in general, by areas related to natural language processing. The main contribution of this thesis consists of, in contrast with the majority of current techniques, the fact that the method proposed does not analyze the syntactic surface structure of the language, but explores his deep semantic level. Its objective, therefore, is trying to infer the domain model from the way the meanings of the sentences are articulated in natural language. Since the deep semantic level does not depend on the language, the method will allow to operate in multilingual scenarios, where it is necessary to combine information from texts in different languages. To access to this level of the language, the method uses the interlingua model. These formalisms, coming from the area of machine translation, allow to represent the meaning of the sentences independently of the language. In this particular case, UNL (Universal Networking Language) will be used, which considered to be the only interlingua of general purpose that is standardized. The approach used in this thesis corresponds to the continuation of previous works carried out both by the author of this thesis and by the research group of which he is part, in which it is studied how to use the interlingua model in the areas of multilingual information extraction and retrieval. Basically, the procedure defined in the method tries to identify certain regularities at the UNL representation of texts that allow the deduction of the parts of the ontology of the domain. Since UNL is a formalism based on semantic networks, these regularities are presented in the form of graphs, generalizing in structures called linguistic patterns. On the other hand, UNL still preserves certain mechanisms of discourse cohesion from natural languages, such as the phenomenon of the anaphora. In order to increase the effectiveness in the understanding of expressions, the method provides, as another significant contribution, the definition of an algorithm for the resolution of pronominal anaphora limited to the model of the interlingua, in the case of third person personal pronouns when its antecedent is a proper noun. The proposed method is based on the definition of a formal framework, adapting some definitions from Graph Theory and incorporating new ones, in order to locate the notions of UNL expression and linguistic pattern, as well as the operations of pattern matching, which are the basis of the method processes. Both the formal framework and all the processes that define the method have been implemented in order to carry out the experimentation, applying on an article of the "Encyclopedia of Life Support Systems" of the UNESCO-EOLSS collection.