881 resultados para Automated negotiation
Resumo:
Notification Services mediate between information publishers and consumers that wish to subscribe to periodic updates. In many cases, however, there is a mismatch between the dissemination of these updates and the delivery preferences of the consumer, often in terms of frequency of delivery, quality, etc. In this paper, we present an automated negotiation engine that identifies mutually acceptable terms; we study its performance, and discuss its application to a Grid Notification Service. We also demonstrate how the negotiation engine enables users to control the Quality of Service levels they require.
Resumo:
Notification Services mediate between information publishers and consumers that wish to subscribe to periodic updates. In many cases, however, there is a mismatch between the dissemination of these updates and the delivery preferences of the consumer, often in terms of frequency of delivery, quality, etc. In this paper, we present an automated negotiation engine that identifies mutually acceptable terms; we study its performance, and discuss its application to a Grid Notification Service. We also demonstrate how the negotiation engine enables users to control the Quality of Service levels they require.
Resumo:
This paper reports on a system for automated agent negotiation, based on a formal and executable approach to capture the behavior of parties involved in a negotiation. It uses the JADE agent framework, and its major distinctive feature is the use of declarative negotiation strategies. The negotiation strategies are expressed in a declarative rules language, defeasible logic, and are applied using the implemented system DR-DEVICE. The key ideas and the overall system architecture are described, and a particular negotiation case is presented in detail.
Resumo:
Many automated negotiation models have been developed to solve the conflict in many distributed computational systems. However, the problem of finding win-win outcome in multiattribute negotiation has not been tackled well. To address this issue, based on an evolutionary method of multiobjective optimization, this paper presents a negotiation model that can find win-win solutions of multiple attributes, but needs not to reveal negotiating agents' private utility functions to their opponents or a third-party mediator. Moreover, we also equip our agents with a general type of utility functions of interdependent multiattributes, which captures human intuitions well. In addition, we also develop a novel time-dependent concession strategy model, which can help both sides find a final agreement among a set of win-win ones. Finally, lots of experiments confirm that our negotiation model outperforms the existing models developed recently. And the experiments also show our model is stable and efficient in finding fair win-win outcomes, which is seldom solved in the existing models. © 2012 Wiley Periodicals, Inc.
Resumo:
Automated negotiation systems can do better than human being in many aspects, and thus are applied into many domains ranging from business to computer science. However, little work about automating negotiation of complex business contract has been done so far although it is a kind of the most important negotiation in business. In order to address this issue, in this paper we developed an automated system for this kind of negotiation. This system is based on the principled negotiation theory, which is the most effective method of negotiation in the domain of business. The system is developed as a knowledge-based one because a negotiating agent in business has to be economically intelligent and capable of making effective decisions based on business experiences and knowledge. Finally, the validity of the developed system is shown in a real negotiation scenario where on behalf of human users, the system successfully performed a negotiation of a complex business contract between a wholesaler and a retailer. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
This paper proposes an implementation, based on a multi-agent system, of a management system for automated negotiation of electricity allocation for charging electric vehicles (EVs) and simulates its performance. The widespread existence of charging infrastructures capable of autonomous operation is recognised as a major driver towards the mass adoption of EVs by mobility consumers. Eventually, conflicting requirements from both power grid and EV owners require automated middleman aggregator agents to intermediate all operations, for example, bidding and negotiation, between these parts. Multi-agent systems are designed to provide distributed, modular, coordinated and collaborative management systems; therefore, they seem suitable to address the management of such complex charging infrastructures. Our solution consists in the implementation of virtual agents to be integrated into the management software of a charging infrastructure. We start by modelling the multi-agent architecture using a federated, hierarchical layers setup and as well as the agents' behaviours and interactions. Each of these layers comprises several components, for example, data bases, decision-making and auction mechanisms. The implementation of multi-agent platform and auctions rules, and of models for battery dynamics, is also addressed. Four scenarios were predefined to assess the management system performance under real usage conditions, considering different types of profiles for EVs owners', different infrastructure configurations and usage and different loads on the utility grid (where real data from the concession holder of the Portuguese electricity transmission grid is used). Simulations carried with the four scenarios validate the performance of the modelled system while complying with all the requirements. Although all of these have been performed for one charging station alone, a multi-agent design may in the future be used for the higher level problem of distributing energy among charging stations. Copyright (c) 2014 John Wiley & Sons, Ltd.
Resumo:
Peut-être mieux connu sous son appellation anglaise d' «online dispute resolution» ou ODR, le règlement en ligne des différends réfère à la migration, vers Internet, des modes alternatifs de résolution des conflits, dont font entre autres partie la négociation, la conciliation, la médiation et l'arbitrage. Cet article présente d'abord brièvement les quatre procédés d'ODR les plus souvent rencontrés en pratique, soit la négociation automatisée, la négociation en ligne assistée par ordinateur, la médiation en ligne et l'arbitrage en ligne. Il examine ensuite les types de conflits qui trouvent actuellement une solution par l'entremise de l'Internet, conflits qui peuvent naître aussi bien sur la Toile qu'hors ligne. On y aborde, en troisième lieu, les avantages de la résolution en ligne des litiges, lesquels ont trait à la modicité, la rapidité, la souplesse et la convivialité, en insistant sur l'attrait tout particulier que cette nouvelle forme de justice présente pour les conflits résultant de la cyberconsommation. Puis, après un survol des arguments les plus souvent cités à l'encontre du règlement électronique des différends, on fait état du phénomène d'institutionnalisation de la résolution en ligne, qui investit aujourd'hui les cours de justice.
Resumo:
La protection des renseignements personnels est au cœur des préoccupations de tous les acteurs du Web, commerçants ou internautes. Si pour les uns trop de règles en la matière pourraient freiner le développement du commerce électronique, pour les autres un encadrement des pratiques est essentiel à la protection de leur vie privée. Même si les motivations de chacun sont divergentes, le règlement de cette question apparaît comme une étape essentielle dans le développement du réseau. Le Platform for Privacy Preference (P3P) propose de contribuer à ce règlement par un protocole technique permettant la négociation automatique, entre l’ordinateur de l’internaute et celui du site qu’il visite, d’une entente qui encadrera les échanges de renseignements. Son application pose de nombreuses questions, dont celle de sa capacité à apporter une solution acceptable à tous et surtout, celle du respect des lois existantes. La longue et difficile élaboration du protocole, ses dilutions successives et sa mise en vigueur partielle témoignent de la difficulté de la tâche à accomplir et des résistances qu’il rencontre. La première phase du projet se limite ainsi à l’encodage des politiques de vie privée des sites et à leur traduction en termes accessibles par les systèmes des usagers. Dans une deuxième phase, P3P devrait prendre en charge la négociation et la conclusion d’ententes devant lier juridiquement les parties. Cette tâche s’avère plus ardue, tant sous l’angle juridique que sous celui de son adaptation aux us et coutumes du Web. La consolidation des fonctions mises en place dans la première version apparaît fournir une solution moins risquée et plus profitable en écartant la possible conclusion d’ententes incertaines fondées sur une technique encore imparfaite. Mieux éclairer le consentement des internautes à la transmission de leurs données personnelles par la normalisation des politiques de vie privée pourrait être en effet une solution plus simple et efficace à court terme.
Resumo:
Automated negotiation is widely applied in various domains. However, the development of such systems is a complex knowledge and software engineering task. So, a methodology there will be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for such system development. To remove this limitation, this paper develops a new methodology made up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating agent by assembling these standardised components rather than reinventing the wheel each time. Moreover, since these patterns are identified from a wide variety of existing negotiating agents (especially high impact ones), they can also improve the quality of the final systems developed. In addition, our methodology reveals what types of domain knowledge need to be input into the negotiating agents. This in turn provides a basis for developing techniques to acquire the domain knowledge from human users. This is important because negotiation agents act faithfully on the behalf of their human users and thus the relevant domain knowledge must be acquired from the human users. Finally, our methodology is validated with one high impact system.
Resumo:
Media content personalisation is a major challenge involving viewers as well as media content producer and distributor businesses. The goal is to provide viewers with media items aligned with their interests. Producers and distributors engage in item negotiations to establish the corresponding service level agreements (SLA). In order to address automated partner lookup and item SLA negotiation, this paper proposes the MultiMedia Brokerage (MMB) platform, which is a multiagent system that negotiates SLA regarding media items on behalf of media content producer and distributor businesses. The MMB platform is structured in four service layers: interface, agreement management, business modelling and market. In this context, there are: (i) brokerage SLA (bSLA), which are established between individual businesses and the platform regarding the provision of brokerage services; and (ii) item SLA (iSLA), which are established between producer and distributor businesses about the provision of media items. In particular, this paper describes the negotiation, establishment and enforcement of bSLA and iSLA, which occurs at the agreement and negotiation layers, respectively. The platform adopts a pay-per-use business model where the bSLA define the general conditions that apply to the related iSLA. To illustrate this process, we present a case study describing the negotiation of a bSLA instance and several related iSLA instances. The latter correspond to the negotiation of the Electronic Program Guide (EPG) for a specific end viewer.
Resumo:
The control of the right application of medical protocols is a key issue in hospital environments. For the automated monitoring of medical protocols, we need a domain-independent language for their representation and a fully, or semi, autonomous system that understands the protocols and supervises their application. In this paper we describe a specification language and a multi-agent system architecture for monitoring medical protocols. We model medical services in hospital environments as specialized domain agents and interpret a medical protocol as a negotiation process between agents. A medical service can be involved in multiple medical protocols, and so specialized domain agents are independent of negotiation processes and autonomous system agents perform monitoring tasks. We present the detailed architecture of the system agents and of an important domain agent, the database broker agent, that is responsible of obtaining relevant information about the clinical history of patients. We also describe how we tackle the problems of privacy, integrity and authentication during the process of exchanging information between agents.
Resumo:
37
Resumo:
PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.
Resumo:
Aims. In this work, we describe the pipeline for the fast supervised classification of light curves observed by the CoRoT exoplanet CCDs. We present the classification results obtained for the first four measured fields, which represent a one-year in-orbit operation. Methods. The basis of the adopted supervised classification methodology has been described in detail in a previous paper, as is its application to the OGLE database. Here, we present the modifications of the algorithms and of the training set to optimize the performance when applied to the CoRoT data. Results. Classification results are presented for the observed fields IRa01, SRc01, LRc01, and LRa01 of the CoRoT mission. Statistics on the number of variables and the number of objects per class are given and typical light curves of high-probability candidates are shown. We also report on new stellar variability types discovered in the CoRoT data. The full classification results are publicly available.
Resumo:
We develop an automated spectral synthesis technique for the estimation of metallicities ([Fe/H]) and carbon abundances ([C/Fe]) for metal-poor stars, including carbon-enhanced metal-poor stars, for which other methods may prove insufficient. This technique, autoMOOG, is designed to operate on relatively strong features visible in even low- to medium-resolution spectra, yielding results comparable to much more telescope-intensive high-resolution studies. We validate this method by comparison with 913 stars which have existing high-resolution and low- to medium-resolution to medium-resolution spectra, and that cover a wide range of stellar parameters. We find that at low metallicities ([Fe/H] less than or similar to -2.0), we successfully recover both the metallicity and carbon abundance, where possible, with an accuracy of similar to 0.20 dex. At higher metallicities, due to issues of continuum placement in spectral normalization done prior to the running of autoMOOG, a general underestimate of the overall metallicity of a star is seen, although the carbon abundance is still successfully recovered. As a result, this method is only recommended for use on samples of stars of known sufficiently low metallicity. For these low- metallicity stars, however, autoMOOG performs much more consistently and quickly than similar, existing techniques, which should allow for analyses of large samples of metal-poor stars in the near future. Steps to improve and correct the continuum placement difficulties are being pursued.