983 resultados para Atomic lithography
Resumo:
We report the results of a study into the factors controlling the quality of nanolithographic imaging. Self-assembled monolayer (SAM) coverage, subsequent postetch pattern definition, and minimum feature size all depend on the quality of the Au substrate used in material mask atomic nanolithographic experiments. We find that sputtered Au substrates yield much smoother surfaces and a higher density of {111}-oriented grains than evaporated Au surfaces. Phase imaging with an atomic force microscope shows that the quality and percentage coverage of SAM adsorption are much greater for sputtered Au surfaces. Exposure of the self-assembled monolayer to an optically cooled atomic Cs beam traversing a two-dimensional array of submicron material masks mounted a few microns above the self-assembled monolayer surface allowed determination of the minimum average Cs dose (2 Cs atoms per self-assembled monolayer molecule) to write the monolayer. Suitable wet etching, with etch rates of 2.2 nm min-1, results in optimized pattern definition. Utilizing these optimizations, material mask features as small as 230 nm in diameter with a fractional depth gradient of 0.820 nm were realized.
Resumo:
A modified tapping mode of the atomic force microscope (AFM) was introduced for manipulation, dissection, and lithography. By sufficiently decreasing the amplitude of AFM tip in the normal tapping mode and adjusting the setpoint, the tip-sample interaction can be efficiently controlled. This modified tapping mode has some characteristics of the AFM contact mode and can be used to manipulate nanoparticles, dissect biomolecules, and make lithographs on various surfaces. This method did not need any additional equipment and it can be applied to any AFM system.
Resumo:
Atomic layer deposition (ALD) is a method to deposit thin films from gaseous precursors to the substrate layer-by-layer so that the film thickness can be tailored with atomic layer accuracy. Film tailoring is even further emphasized with selective-area ALD which enables the film growth to be controlled also on the substrate surface. Selective-area ALD allows the decrease of a process steps in preparing thin film devices. This can be of a great technological importance when the ALD films become into wider use in different applications. Selective-area ALD can be achieved by passivation or activation of a surface. In this work ALD growth was prevented by octadecyltrimethoxysilane, octadecyltrichlorosilane and 1-dodecanethiol SAMs, and by PMMA (polymethyl methacrylate) and PVP (poly(vinyl pyrrolidone) polymer films. SAMs were prepared from vapor phase and by microcontact printing, and polymer films were spin coated. Microcontact printing created patterned SAMs at once. The SAMs prepared from vapor phase and the polymer mask layers were patterned by UV lithography or lift-off process so that after preparation of a continuous mask layer selected areas of them were removed. On these areas the ALD film was deposited selectively. SAMs and polymer films prevented the growth in several ALD processes such as iridium, ruthenium, platinum, TiO2 and polyimide so that the ALD films did grow only on areas without SAM or polymer mask layer. PMMA and PVP films also protected the surface against Al2O3 and ZrO2 growth. Activation of the surface for ALD of ruthenium was achieved by preparing a RuOX layer by microcontact printing. At low temperatures the RuCp2-O2 process nucleated only on this oxidative activation layer but not on bare silicon.
Resumo:
We review the two kinds of forces that near-resonant light exerts on atoms the spontaneous force that is used for laser cooling, and the stimulated force that is used for coherent manipulation of atoms. We will discuss an experiment where laser cooling is used to collimate an atomic beam of sodium atoms, and the stimulated force within one period of a one-dimensional standing wave is used as a lens to focus the atoms to a narrow line about 20 nm wide. This kind of atom lithography is an example of the general field of atom optics in which light is used to manipulate atoms.
Resumo:
Silicon crystal-facet-dependent nanostructures have been successfully fabricated on a (100)-oriented silicon-on-insulator wafer using electron-beam lithography and the silicon anisotropic wet etching technique. This technique takes ad-vantage of the large difference in etching properties for different crystallographic planes in alkaline solution. The mini-mum size of the trapezoidal top for those Si nanostructures can be reduced to less than 10nm. Scanning electron microscopy(SEM) and atomic force microscopy (AFM) observations indicate that the etched nanostructures have controllable shapes and smooth surfaces.
Resumo:
X-2-y(2)SiO(5):A (A = Eu3+, Tb3+, Ce3+) phosphor films and their patterning were fabricated by a sol-gel process combined with a soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy (SEM) optical microscopy and photoluminescence (PL) were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 900 degreesC with X-1-Y2SiO5, which transformed completely to X-2-Y2SiO5 at 1250 degreesC. Patterned thin films with different band widths (5 pin spaced by 5 pm and 16 pm spaced by 24 pm) were obtained by a soft lithography technique (micromoulding in capillaries, MIMIC). The SEM and AFM study revealed that the nonpattemed phosphor films were uniform and crack free, and the films mainly consisted of closely packed grains with an average size of 350 run. The doped rare earth ions (A) showed their characteristic emissions in X-2-Y2SiO5 phosphor films, i.e., D-5(0)-F-7(J) (J = 0, 1, 2,3,4) for Eu3+, D-5(3), (4)-F-7(J) (J = 6, 5, 4, 3) for Tb3+ and 5d (D-2)-4f (F-2(2/5),(2/7)) for Ce3+, respectively. The optimum doping concentrations for EU3+, Tb3+ were determined to be 13 and 8 mol% of Y3+ in X-2-Y2SiO5 films, respectively.
Resumo:
Scanning probe lithography (SPL), employing the tip of an atomic force microscope to mechanically pattern various materials in nanoscale region has provided a simple but significant method for making nanostructures. We use this technique for the lithography of several kinds of substrate surfaces. The tip performance has been found to be a crucial factor in the lithographic process. Four types of cantilevers are employed in nanolithography, including standard silicon nitride (DNP), tapping mode(TM) etched silicon (TESP(W)), uncoated silicon cantilever (NSC21/50) and conductive platinum/iridium-coated probe. Results demonstrate that tips with smaller spring constants can not be used for physically scribing and nanomanipulating in our experiment. The possible mechanism of our experiment is discussed.
Resumo:
Atomic force microscope (AFM)-based scanned probe oxidation (SPO) nanolithography has been carried out on an octadecyl-terminated Si(111) surface to create dot-array patterns under ambient conditions in contact mode. The kinetics investigations indicate that this SPO process involves three stages. Within the steadily growing stage, the height of oxide dots increases logarithmically with pulse duration and linearly with pulse voltage. The lateral size of oxide dots tends to vary in a similar way. Our experiments show that a direct-log kinetic model is more applicable than a power-of-time law model for the SPO process on an alkylated silicon in demonstrating the dependence of oxide thickness on voltage exposure time within a relatively wide range. In contrast with the SPO on the octodecysilated SiO2/silicon surface, this process can be realized by a lower voltage with a shorter exposure time, which will be of great benefit to the fabrication of integrated nanometer-sized electronic devices on silicon-based substrates. This study demonstrates that the alkylated silicon is a new promising substrate material for silicon-based nanolithography.
Resumo:
Scanned probe oxidation (SPO) nanolithography has been performed with an atomic force microscope (AFM) on an octadecyl-terminated silicon (111) surface to create protuberant oxide line patterns under ambient conditions in contact mode. The kinetic investigations of this SPO process indicate that the oxide line height increases linearly with applied voltage and decreases logarithmically with writing, speed. The oxide line width also tends to vary with the same law. The ambient humidity and the AFM tip state can remarkably influence this process, too. As compared with traditional octadecylsilated SiO2/Si substrate, such a substrate can guarantee the SPO with an obviously lowered voltage and a greatly increased writing speed. This study demonstrates that such alkylated silicon is a promising silicon-based substrate material for SPO nanolithography.
Resumo:
Silicate oxyapatite La-9.33 (SiO6)(4)O-2:A (A = Eu3+, Tb3+ and/or Ce3+) phosphor films and their patterning were fabricated by a sol-gel process combined with soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, atomic force microscopy, optical microscopy and photoluminescence spectra, as well as lifetimes, were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800degreesC and the crystallinity increased with the increase in annealing temperatures. Transparent nonpatterned phosphor films were uniform and crack-free, which mainly consisted of rodlike grains with a size between 150 and 210 nm. Patterned thin films with different bandwidths (20, 50 mum) were obtained by the micromoulding in capillaries technique. The doped rare earth ions (Eu3+, Tb3+ and Ce3+) showed their characteristic emission in crystalline La-9.33(SiO6)(4)O-2 phosphor films, i.e. Eu3+ D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4), Tb3+ D-5(3,4)-F-7(J) (J = 3, 4, 5, 6) and Ce3+ 5d (D-2)-4f (F-2(2/5), F-2(2/7)) emissions, respectively. Both the lifetimes and PL intensity of the Eu3+, Tb3+ ions increased with increasing annealing temperature from 800 to 1100 degreesC, and the optimum concentrations for Eu3+, Tb3+ were determined to be 9 and 7 mol% of La3+ in La-9.33(SiO6)(4)O-2 films, respectively. An energy transfer from Ce3+ to Tb3+ was observed in the La-9.33(SiO6)(4)O-2:Ce, Tb phosphor films, and the energy transfer efficiency was estimated as a function of Tb3+ concentration.
Resumo:
Nanocrystalline Y2O3:Eu3+ phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography. X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM), optical microscopy, UV/vis transmission and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 500 degreesC and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free non-patterned phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. Using micro-molding in capillaries technique, we obtained homogeneous and defects-free patterned gel and crystalline phosphor films with different stripe widths (5, 10, 20 and 50 mum). Significant shrinkage (50%) was observed in the patterned films during the heat treatment process. The doped Eu3+ showed its characteristic emission in crystalline Y2O3 phosphor films due to an efficient energy transfer from Y2O3 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 500 to 900 degreesC, and the optimum concentrations for Eu3+ were determined to be 5 mol%.
Resumo:
Nanocrystalline Gd2O3:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical microscopy, UV/vis transmission and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 500 degreesC and that the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free non-patterned phosphor films were obtained by optimizing the composition of the coating sol, which mainly consisted of grains with an average size of 70 nm and a thickness of 550 nm. Using micro-molding in capillaries technique, we obtained homogeneous and defects-free patterned gel and crystalline phosphor films with different stripe widths (5, 10, 20 and 50 mum). Significant shrinkage (50%) was observed in the patterned films during the heat treatment process. The doped rare earth ions (A) showed their characteristic emission in crystalline Gd2O3 phosphor films due to an efficient energy transfer from Gd2O3 host to them. Both the lifetimes and PL intensity of the rare earth ions increased with increasing the annealing temperature from 500 to 900 degreesC, and the optimum concentrations for Eu3+, Dy3+, sm(3+), Er3+ were determined to be 5, 0.25, 1 and 1.5 mol% of Gd3+ in Gd2O3 films, respectively.
Resumo:
Rhodamine B (RB)-doped organic-inorganic silica films and their patterning were fabricated by a sol-gel process combined with a soft lithography. The resulted film samples were characterized by atomic force microscope (AFM), optical microscope and UV/Vis absorption and photoluminescence excitation and emission spectra. The effects of the concentration of the RB dye and heat treatment temperature on the optical properties of the hybrid silica films have been studied. Four kinds of patterning structures with film line widths of 5, 10, 20 and 50 mum have been obtained by micromolding in capillaries by a soft lithography technique. The RB-doped hybrid silica films present a red color, with an excitation and emission bands around 564 and 585 mum, respectively. With increasing the RB concentration, the emission intensity of the RB-doped hybrid silica films increases and the emission maximum presents a red shift. The emission intensity of the films decreases with increasing the heat treatment temperatures.
Resumo:
Nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM) and optical microscopy, UV/vis transmission and absorption spectra, photoluminescence (PL) spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 400 degreesC and the crystallinity increased with the increase of annealing temperatures. Transparent nonpatterned phosphor films were uniform and crack-free, which mainly consisted of grains with an average size of 90 nm. Patterned gel and crystalline phosphor film bands with different widths (5-60 mum) were obtained. Significant shrinkage and a few defects were observed in the patterned films during the heat treatment process. The doped rare earth ions (A) showed their characteristic emission in crystalline YVO4 phosphor films because of an efficient energy transfer from vanadate groups to them. The Sm3+ and Er3+ ions also showed upconversion luminescence in a YVO4 film host. Both the lifetimes and PL intensity of the rare earth ions increased with increasing annealing temperature from 400 to 800 degreesC, and the optimum concentration for Eu3+ was determined to be 7 mol % and those for Dy3+, Sm3-, and Er3+ were 2 Mol % of Y3- in YVO4 films, respectively.
Resumo:
Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms(1). This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected(2). Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly polarized radiation(3). In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage 'shake-up' reaction(4). Here we report a unique combination of experimental techniques(5-8) that allows us to accurately measure the tunnel ionization probability for argon exposed to 50-fs laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry(7,8), equivalent to a homogenous electric field. Furthermore, circularly polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up(9). From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond extreme-ultraviolet-radiation sources(10). Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in vivo cells and nanoscale extreme-ultraviolet lithography.