999 resultados para Atomic forces


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) was applied to study the surface morphology of SrTiO3 substrates which were polished by traditional mechanical and chemical mechanical method respectively. The influence of anneal was also studied. Results show that the RMS of CMP STO substrates can be 0.214 nm. Compared the rocking curve of the unannealed STO substrates with the annealed ones, it indicates that anneal can improve the crystal quality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate the pH-induced assembly of 2-mercaptosuccinic acid-functionalized silver nanoparticles (MSA-Ag NPs) in the absence of hard or soft template. Two-dimensional (2D) and three-dimensional (3D) networks of silver NPs were achieved by tuning pH of the medium. The assembly process was monitored using atomic forces microscopy. The key factor affects the formation of network of silver NPs may be intermolecular hydrogen bonding between two carboxylic acid groups of MSA on two adjacent silver NPs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a continuous search for theoretical methods that are able to describe the effects of the liquid environment on molecular systems. Different methods emphasize different aspects, and the treatment of both the local and bulk properties is still a great challenge. In this work, the electronic properties of a water molecule in liquid environment is studied by performing a relaxation of the geometry and electronic distribution using the free energy gradient method. This is made using a series of steps in each of which we run a purely molecular mechanical (MM) Monte Carlo Metropolis simulation of liquid water and subsequently perform a quantum mechanical/molecular mechanical (QM/MM) calculation of the ensemble averages of the charge distribution, atomic forces, and second derivatives. The MP2/aug-cc-pV5Z level is used to describe the electronic properties of the QM water. B3LYP with specially designed basis functions are used for the magnetic properties. Very good agreement is found for the local properties of water, such as geometry, vibrational frequencies, dipole moment, dipole polarizability, chemical shift, and spin-spin coupling constants. The very good performance of the free energy method combined with a QM/MM approach along with the possible limitations are briefly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this present work we present a methodology that aims to apply the many-body expansion to decrease the computational cost of ab initio molecular dynamics, keeping acceptable accuracy on the results. We implemented this methodology in a program which we called ManBo. In the many-body expansion approach, we partitioned the total energy E of the system in contributions of one body, two bodies, three bodies, etc., until the contribution of the Nth body [1-3]: E = E1 + E2 + E3 + …EN. The E1 term is the sum of the internal energy of the molecules; the term E2 is the energy due to interaction between all pairs of molecules; E3 is the energy due to interaction between all trios of molecules; and so on. In Manbo we chose to truncate the expansion in the contribution of two or three bodies, both for the calculation of the energy and for the calculation of the atomic forces. In order to partially include the many-body interactions neglected when we truncate the expansion, we can include an electrostatic embedding in the electronic structure calculations, instead of considering the monomers, pairs and trios as isolated molecules in space. In simulations we made we chose to simulate water molecules, and use the Gaussian 09 as external program to calculate the atomic forces and energy of the system, as well as reference program for analyzing the accuracy of the results obtained with the ManBo. The results show that the use of the many-body expansion seems to be an interesting approach for reducing the still prohibitive computational cost of ab initio molecular dynamics. The errors introduced on atomic forces in applying such methodology are very small. The inclusion of an embedding electrostatic seems to be a good solution for improving the results with only a small increase in simulation time. As we increase the level of calculation, the simulation time of ManBo tends to largely decrease in relation to a conventional BOMD simulation of Gaussian, due to better scalability of the methodology presented. References [1] E. E. Dahlke and D. G. Truhlar; J. Chem. Theory Comput., 3, 46 (2007). [2] E. E. Dahlke and D. G. Truhlar; J. Chem. Theory Comput., 4, 1 (2008). [3] R. Rivelino, P. Chaudhuri and S. Canuto; J. Chem. Phys., 118, 10593 (2003).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen can be an unlimited source of clean energy for future because of its very high energy density compared to the conventional fuels like gasoline. An efficient and safer way of storing hydrogen is in metals and alloys as hydrides. Light metal hydrides, alanates and borohydrides have very good hydrogen storage capacity, but high operation temperatures hinder their application. Improvement of thermodynamic properties of these hydrides is important for their commercial use as a source of energy. Application of pressure on materials can have influence on their properties favoring hydrogen storage. Hydrogen desorption in many complex hydrides occurs above the transition temperature. Therefore, it is important to study the physical properties of the hydride compounds at ambient and high pressure and/or high temperature conditions, which can assist in the design of suitable storage materials with desired thermodynamic properties. ^ The high pressure-temperature phase diagram, thermal expansion and compressibility have only been evaluated for a limited number of hydrides so far. This situation serves as a main motivation for studying such properties of a number of technologically important hydrides. Focus of this dissertation was on X-ray diffraction and Raman spectroscopy studies of Mg2FeH6, Ca(BH4) 2, Mg(BH4)2, NaBH4, NaAlH4, LiAlH4, LiNH2BH3 and mixture of MgH 2 with AlH3 or Si, at different conditions of pressure and temperature, to obtain their bulk modulus and thermal expansion coefficient. These data are potential source of information regarding inter-atomic forces and also serve as a basis for developing theoretical models. Some high pressure phases were identified for the complex hydrides in this study which may have better hydrogen storage properties than the ambient phase. The results showed that the highly compressible B-H or Al-H bonds and the associated bond disordering under pressure is responsible for phase transitions observed in brorohydrides or alanates. Complex hydrides exhibited very high compressibility suggesting possibility to destabilize them with pressure. With high capacity and favorable thermodynamics, complex hydrides are suitable for reversible storage. Further studies are required to overcome the kinetic barriers in complex hydrides by catalytic addition. A comparative study of the hydride properties with that of the constituting metal, and their inter relationships were carried out with many interesting features.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Direct measurement of three-dimensional (3-D) forces between an atomic force microscope (AFM) probe and the sample benefits diverse applications of AFM, including force spectroscopy, nanometrology, and manipulation. This paper presents the design and evaluation of a measurement system, wherein the deflection of the AFM probe is obtained at two points to enable direct measurement of all the three components of 3-D tip-sample forces in real time. The optimal locations for measurement of deflection on the probe are derived for a conventional AFM probe. Further, a new optimal geometry is proposed for the probe that enables measurement of 3-D forces with identical sensitivity and nearly identical resolution along all three axes. Subsequently, the designed measurement system and the optimized AFM probe are both fabricated and evaluated. The evaluation demonstrates accurate measurement of tip-sample forces with minimal cross-sensitivities. Finally, the real-time measurement system is employed as part of a feedback control system to regulate the normal component of the interaction force, and to perform force-controlled scribing of a groove on the surface of polymethyl methacrylate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Capillary forces are significantly dominant in adhesive forces measured with an atomic force microscope (AFM) in ambient air, which are always thought to be dependent on water film thickness, relative humidity, and the free energy of water film. We study the nature of the pull-off force on a variety of surfaces as a function of tip velocity. It is found that the capillary forces are of relatively strong dependence on tip velocity. The present experiment is expected to provide a better understanding of the work mechanism of AFM in ambient air.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a self-consistent tight-binding formalism to calculate the forces on individual atoms due to the flow of electrical current in atomic-scale conductors. Simultaneously with the forces, the method yields the local current density and the local potential in the presence of current flow, allowing a direct comparison between these quantities. The method is applicable to structures of arbitrary atomic geometry and can be used to model current-induced mechanical effects in realistic nanoscale junctions and wires. The formalism is implemented within a simple Is tight-binding model and is applied to two model structures; atomic chains and a nanoscale wire containing a vacancy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The adhesion force between an atomic force microscope (AFM) tip and sample surfaces, mica and quartz substrates, was measured in air and water. The force curves show that the adhesion has a strong dependence on both the surface roughness and the environmental conditions surrounding the sample. The variability of the adhesion force was examined in a series of measurements taken at the same point, as well as at different places on the sample surface. The adhesion maps obtained from the distribution of the measured forces indicated regions contaminated by either organic compounds or adsorbed water. Using simple mathematical expressions we could quantitatively predict the adhesion force behavior in both air and water. The experimental results are in good agreement with theoretical calculations, where the adhesion forces in air and water were mostly associated with capillary and van der Waals forces, respectively. A small long-range repulsive force is also observed in water due to the overlapping electrical double-layers formed on both the tip and sample surfaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation has been made of the interactions between silicone oil and various solid substrates immersed in aqueous solutions. Measurements were made using an atomic force microscope (AFM) using the colloid-probe method. The silicone oil drop is simulated by coating a small silica sphere with the oil, and measuring the force as this coated sphere is brought close to contact with a flat solid surface. It is found that the silicone oil surface is negatively charged, which causes a double-layer repulsion between the oil drop and another negatively charged surface such as mica. With hydrophilic solids, this repulsion is strong enough to prevent attachment of the drop to the solid. However, with hydrophobic surfaces there is an additional attractive force which overcomes the double-layer repulsion, and the silicone oil drop attaches to the solid. A "ramp" force appears in some, but not all, of the data sets. There is circumstantial evidence that this force results from compression of the silicone oil film coated on the glass sphere.