976 resultados para Atomic contacts
Resumo:
Using the mechanically controlled break junction technique at low temperatures and under cryogenic vacuum conditions we have studied atomic contacts of several magnetic (Fe, Co, and Ni) and nonmagnetic (Pt) metals, which recently were claimed to show fractional conductance quantization. In the case of pure metals we see no quantization of the conductance nor half quantization, even when high magnetic fields are applied. On the other hand, features in the conductance similar to (fractional) quantization are observed when the contact is exposed to gas molecules. Furthermore, the absence of fractional quantization when the contact is bridged by H2 indicates the current is never fully polarized for the metals studied here. Our results are in agreement with recent model calculations.
Resumo:
We investigate both experimentally and theoretically the evolution of conductance in metallic one-atom contacts under elastic deformation. While simple metals like Au exhibit almost constant conductance plateaus, Al and Pb show inclined plateaus with positive and negative slopes. It is shown how these behaviors can be understood in terms of the orbital structure of the atoms forming the contact. This analysis provides further insight into the issue of conductance quantization in metallic contacts revealing important aspects of their atomic and electronic structures.
Resumo:
The conductance of atomic-sized metallic point contacts is shown to be strongly voltage dependent due to quantum interference with impurities even in samples with low impurity concentrations. Transmission through these small contacts depends not only on the local atomic structure at the contact but also on the distribution of impurities or defects within a coherence length of the contact. In contrast with other mesoscopic systems we show that transport through atomic contacts is coherent even at room temperature. The use of a scanning tunneling microscope (STM) makes it possible to fabricate one atom contacts of gold whose transmission can be controlled by manipulation of the contact allowing inelastic spectroscopy in such small contacts.
Resumo:
Atomic contacts made of ferromagnetic metals present zero-bias anomalies in the differential conductance due to the Kondo effect. These systems provide a unique opportunity to perform a statistical analysis of the Kondo parameters in nanostructures since a large number of contacts can be easily fabricated using break-junction techniques. The details of the atomic structure differ from one contact to another so a large number of different configurations can be statistically analyzed. Here we present such a statistical analysis of the Kondo effect in atomic contacts made from the ferromagnetic transition metals Ni, Co, and Fe. Our analysis shows clear differences between materials that can be understood by fundamental theoretical considerations. This combination of experiments and theory allows us to extract information about the origin and nature of the Kondo effect in these systems and to explore the influence of geometry and valence in the Kondo screening of atomic-sized nanostructures.
Resumo:
Electrochemical methods have recently become an interesting tool for fabricating and characterizing nanostructures at room temperature. Simplicity, low cost and reversibility are some of the advantages of this technique that allows to work at the nanoscale without requiring sophisticated instrumentation. In our experimental setup, we measure the conductance across a nanocontact fabricated either by dissolving a macroscopic gold wire or by depositing gold in between two separated gold electrodes. We have achieved a high level of control on the electrochemical fabrication of atomic-sized contacts in gold. The use of electrochemistry as a reproducible technique to prepare nanocontacts will open several possibilities that are not feasible with other methodologies. It involves, also, the possibility of reproducing experiments that today are made by more expensive, complicated or irreversible methods. As example, we show here a comparison of the results when looking for shell effects in gold nanocontacts with those obtained by other techniques.
Resumo:
Using a scanning tunnel microscope or mechanically controllable break junctions atomic contacts for Au, Pt, and Ir are pulled to form chains of atoms. We have recorded traces of conductance during the pulling process and averaged these for a large number of contacts. An oscillatory evolution of conductance is observed during the formation of the monoatomic chain suggesting a dependence on the numbers of atoms forming the chain being even or odd. This behavior is not only observed for the monovalent metal Au, as was predicted, but is also found for the other chain-forming metals, suggesting it to be a universal feature of atomic wires.
Resumo:
Most of the biological processes are governed through specific protein-ligand interactions. Discerning different components that contribute toward a favorable protein-ligand interaction could contribute significantly toward better understanding protein function, rationalizing drug design and obtaining design principles for protein engineering. The Protein Data Bank (PDB) currently hosts the structure of similar to 68 000 protein-ligand complexes. Although several databases exist that classify proteins according to sequence and structure, a mere handful of them annotate and classify protein-ligand interactions and provide information on different attributes of molecular recognition. In this study, an exhaustive comparison of all the biologically relevant ligand-binding sites (84 846 sites) has been conducted using PocketMatch: a rapid, parallel, in-house algorithm. PocketMatch quantifies the similarity between binding sites based on structural descriptors and residue attributes. A similarity network was constructed using binding sites whose PocketMatch scores exceeded a high similarity threshold (0.80). The binding site similarity network was clustered into discrete sets of similar sites using the Markov clustering (MCL) algorithm. Furthermore, various computational tools have been used to study different attributes of interactions within the individual clusters. The attributes can be roughly divided into (i) binding site characteristics including pocket shape, nature of residues and interaction profiles with different kinds of atomic probes, (ii) atomic contacts consisting of various types of polar, hydrophobic and aromatic contacts along with binding site water molecules that could play crucial roles in protein-ligand interactions and (iii) binding energetics involved in interactions derived from scoring functions developed for docking. For each ligand-binding site in each protein in the PDB, site similarity information, clusters they belong to and description of site attributes are provided as a relational database-protein-ligand interaction clusters (PLIC).
Resumo:
The transition from tunneling to metallic contact between two surfaces does not always involve a jump, but can be smooth. We have observed that the configuration and material composition of the electrodes before contact largely determine the presence or absence of a jump. Moreover, when jumps are found preferential values of conductance have been identified. Through a combination of experiments, molecular dynamics, and first-principles transport calculations these conductance values are identified with atomic contacts of either monomers, dimers, or double-bond contacts.
Resumo:
We have measured conductance histograms of atomic point contacts made from the noble-transition-metal alloys CuNi, AgPd, and AuPt for a concentration ratio of 1:1. For all alloys these histograms at low-bias voltage (below 300 mV) resemble those of the noble metals, whereas at high bias (above 300 mV) they resemble those of the transition metals. We interpret this effect as a change in the composition of the point contact with bias voltage. We discuss possible explanations in terms of electromigration and differential diffusion induced by current heating.
Resumo:
Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al2O3 interfacial layer (∼2.8 nm). For diodes with an Al2O3 interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO2 interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.
Resumo:
We synthesized nanoscale TiO2-RuO2 alloys by atomic layer deposition (ALD) that possess a high work function and are highly conductive. As such, they function as good Schottky contacts to extract photogenerated holes from n-type silicon while simultaneously interfacing with water oxidation catalysts. The ratio of TiO2 to RuO2 can be precisely controlled by the number of ALD cycles for each precursor. Increasing the composition above 16% Ru sets the electronic conductivity and the metal work function. No significant Ohmic loss for hole transport is measured as film thickness increases from 3 to 45 nm for alloy compositions >= 16% Ru. Silicon photoanodes with a 2 nm SiO2 layer that are coated by these alloy Schottky contacts having compositions in the range of 13-46% Ru exhibit average photovoltages of 525 mV, with a maximum photovoltage of 570 mV achieved. Depositing TiO2-RuO2 alloys on nSi sets a high effective work function for the Schottky junction with the semiconductor substrate, thus generating a large photovoltage that is isolated from the properties of an overlying oxygen evolution catalyst or protection layer.
Resumo:
Carbon nanotubes, seamless cylinders made from carbon atoms, have outstanding characteristics: inherent nano-size, record-high Young’s modulus, high thermal stability and chemical inertness. They also have extraordinary electronic properties: in addition to extremely high conductance, they can be both metals and semiconductors without any external doping, just due to minute changes in the arrangements of atoms. As traditional silicon-based devices are reaching the level of miniaturisation where leakage currents become a problem, these properties make nanotubes a promising material for applications in nanoelectronics. However, several obstacles must be overcome for the development of nanotube-based nanoelectronics. One of them is the ability to modify locally the electronic structure of carbon nanotubes and create reliable interconnects between nanotubes and metal contacts which likely can be used for integration of the nanotubes in macroscopic electronic devices. In this thesis, the possibility of using ion and electron irradiation as a tool to introduce defects in nanotubes in a controllable manner and to achieve these goals is explored. Defects are known to modify the electronic properties of carbon nanotubes. Some defects are always present in pristine nanotubes, and naturally are introduced during irradiation. Obviously, their density can be controlled by irradiation dose. Since different types of defects have very different effects on the conductivity, knowledge of their abundance as induced by ion irradiation is central for controlling the conductivity. In this thesis, the response of single walled carbon nanotubes to ion irradiation is studied. It is shown that, indeed, by energy selective irradiation the conductance can be controlled. Not only the conductivity, but the local electronic structure of single walled carbon nanotubes can be changed by the defects. The presented studies show a variety of changes in the electronic structures of semiconducting single walled nanotubes, varying from individual new states in the band gap to changes in the band gap width. The extensive simulation results for various types of defect make it possible to unequivocally identify defects in single walled carbon nanotubes by combining electronic structure calculations and scanning tunneling spectroscopy, offering a reference data for a wide scientific community of researchers studying nanotubes with surface probe microscopy methods. In electronics applications, carbon nanotubes have to be interconnected to the macroscopic world via metal contacts. Interactions between the nanotubes and metal particles are also essential for nanotube synthesis, as single walled nanotubes are always grown from metal catalyst particles. In this thesis, both growth and creation of nanotube-metal nanoparticle interconnects driven by electron irradiation is studied. Surface curvature and the size of metal nanoparticles is demonstrated to determine the local carbon solubility in these particles. As for nanotube-metal contacts, previous experiments have proved the possibility to create junctions between carbon nanotubes and metal nanoparticles under irradiation in a transmission electron microscope. In this thesis, the microscopic mechanism of junction formation is studied by atomistic simulations carried out at various levels of sophistication. It is shown that structural defects created by the electron beam and efficient reconstruction of the nanotube atomic network, inherently related to the nanometer size and quasi-one dimensional structure of nanotubes, are the driving force for junction formation. Thus, the results of this thesis not only address practical aspects of irradiation-mediated engineering of nanosystems, but also contribute to our understanding of the behaviour of point defects in low-dimensional nanoscale materials.
Resumo:
Atomically thin layered black phosphorous (BP) has recently appeared as an alternative to the transitional metal dichalcogenides for future channel material in a metal-oxide-semiconductor transistor due to its lower carrier effective mass. Investigation of the electronic property of source/drain contact involving metal and two-dimensional material is essential as it impacts the transistor performance. In this paper, we perform a systematic and rigorous study to evaluate the Ohmic nature of the side-contact formed by the monolayer BP (mBP) and metals (gold, titanium, and palladium), which are commonly used in experiments. Employing the Density Functional Theory, we analyse the potential barrier, charge transfer and atomic orbital overlap at the metal-mBP interface in an optimized structure to understand how efficiently carriers could be injected from metal contact to the mBP channel. Our analysis shows that gold forms a Schottky contact with a higher tunnel barrier at the interface in comparison to the titanium and palladium. mBP contact with palladium is found to be purely Ohmic, where as titanium contact demonstrates an intermediate behaviour. (C) 2014 AIP Publishing LLC.
Resumo:
The effect of inserting ultra-thin atomic layer deposited Al2O3 dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low(Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al2O3/p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al2O3 interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al2O3 interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al2O3/n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current-voltage characteristics displayed by these devices. (C) 2015 Elsevier B.V. All rights reserved.