948 resultados para Atom-surface interactions
Resumo:
Molecular dynamics simulations are used to study the interaction of low-energy Ar atoms with the Ni(001) surface, Angular scattering distributions, in and out of the plane of incidence, are investigated as a function of incident energy, angles of incidence, crystallographic orientation of the incident beam and surface temperature. The results show a clear transition to the structure scattering regime at around 2 eV. However, at lower energies, two sub-regimes are revealed by the simulations, Far energies up to 250 meV, scattering is mainly diffuse, and significant trapping on the surface is observed, At energies above this level, lobular patterns start to form and trapping decreases with the increase in energy, Generally, there is a weak temperature dependence, but variations in the angle of incidence and/or changes in the crystallographic direction, generate significant changes in the scattering patterns.
Resumo:
In the present chapter some prototype gas and gas-surface processes occurring within the hypersonic flow layer surrounding spacecrafts at planetary entry are discussed. The discussion is based on microscopic dynamical calculations of the detailed cross sections and rate coefficients performed using classical mechanics treatments for atoms, molecules and surfaces. Such treatment allows the evaluation of the efficiency of thermal processes (both at equilibrium and nonequilibrium distributions) based on state-to-state and state specific calculations properly averaged over the population of the initial states. The dependence of the efficiency of the considered processes on the initial partitioning of energy among the various degrees of freedom is discussed.
Resumo:
Mesoporous metal oxides are nowadays widely used in various technological applications, for instance in catalysis, biomolecular separations and drug delivery. A popular technique used to synthesize mesoporous metal oxides is the nanocasting process. Mesoporous metal oxide replicas are obtained from the impregnation of a porous template with a metal oxide precursor followed by thermal treatment and removal of the template by etching in NaOH or HF solutions. In a similar manner to the traditional casting wherein the product inherits the features of the mold, the metal oxide replicas are supposed to have an inverse structure of the starting porous template. This is however not the case, as broken or deformed particles and other structural defects have all been experienced during nanocasting experiments. Although the nanocasting technique is widely used, not all the processing steps are well understood. Questions over the fidelity of replication and morphology control are yet to be adequately answered. This work therefore attempts to answer some of these questions by elucidating the nanocasting process, pin pointing the crucial steps involved and how to harness this knowledge in making wholesome replicas which are a true replication of the starting templates. The rich surface chemistry of mesoporous metal oxides is an important reason why they are widely used in applications such as catalysis, biomolecular separation, etc. At times the surface is modified or functionalized with organic species for stability or for a particular application. In this work, nanocast metal oxides (TiO2, ZrO2 and SnO2) and SiO2 were modified with amino-containing molecules using four different approaches, namely (a) covalent bonding of 3-aminopropyltriethoxysilane (APTES), (b) adsorption of 2-aminoethyl dihydrogen phosphate (AEDP), (c) surface polymerization of aziridine and (d) adsorption of poly(ethylenimine) (PEI) through electrostatic interactions. Afterwards, the hydrolytic stability of each functionalization was investigated at pH 2 and 10 by zeta potential measurements. The modifications were successful except for the AEDP approach which was unable to produce efficient amino-modification on any of the metal oxides used. The APTES, aziridine and PEI amino-modifications were fairly stable at pH 10 for all the metal oxides tested while only AZ and PEI modified-SnO2 were stable at pH 2 after 40 h. Furthermore, the functionalized metal oxides (SiO2, Mn2O3, ZrO2 and SnO2) were packed into columns for capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Among the functionalized metal oxides, aziridinefunctionalized SiO2, (SiO2-AZ) showed good chemical stability, and was the most useful packing material in both CLC and CEC. Lastly, nanocast metal oxides were synthesized for phosphopeptide enrichment which is a technique used to enrich phosphorylated proteins in biological samples prior to mass spectrometry analysis. By using the nanocasting technique to prepare the metal oxides, the surface area was controlled within a range of 42-75 m2/g thereby enabling an objective comparison of the metal oxides. The binding characteristics of these metal oxides were compared by using samples with different levels of complexity such as synthetic peptides and cell lysates. The results show that nanocast TiO2, ZrO2, Fe2O3 and In2O3 have comparable binding characteristics. Furthermore, In2O3 which is a novel material in phosphopeptide enrichment applications performed comparably with standard TiO2 which is the benchmark for such phosphopeptide enrichment procedures. The performance of the metal oxides was explained by ranking the metal oxides according to their isoelectric points and acidity. Overall, the clarification of the nanocasting process provided in this work will aid the synthesis of metal oxides with true fidelity of replication. Also, the different applications of the metal oxides based on their surface interactions and binding characteristics show the versatility of metal oxide materials. Some of these results can form the basis from which further applications and protocols can be developed.
Resumo:
Die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen fasziniert sowohl aus angewandter als auch theoretischer Sicht. Sie ist ein wichtiger Aspekt in vielen Anwendungen, unter anderem in chirugischen Implantaten oder Biosensoren. Sie ist außerdem ein Beispiel für theoretische Fragestellungen betreffend die Grenzfläche zwischen harter und weicher Materie. Fest steht, dass Kenntnis der beteiligten Mechanismen erforderlich ist um die Wechselwirkung zwischen Proteinen und Oberflächen zu verstehen, vorherzusagen und zu optimieren. Aktuelle Fortschritte im experimentellen Forschungsbereich ermöglichen die Untersuchung der direkten Peptid-Metall-Bindung. Dadurch ist die Erforschung der theoretischen Grundlagen weiter ins Blickfeld aktueller Forschung gerückt. Eine Möglichkeit die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen zu erforschen ist durch Computersimulationen. Obwohl Simulationen von Metalloberflächen oder Proteinen als Einzelsysteme schon länger verbreitet sind, bringt die Simulation einer Kombination beider Systeme neue Schwierigkeiten mit sich. Diese zu überwinden erfordert ein Mehrskalen-Verfahren: Während Proteine als biologische Systeme ausreichend mit klassischer Molekulardynamik beschrieben werden können, bedarf die Beschreibung delokalisierter Elektronen metallischer Systeme eine quantenmechanische Formulierung. Die wichtigste Voraussetzung eines Mehrskalen-Verfahrens ist eine Übereinstimmung der Simulationen auf den verschiedenen Skalen. In dieser Arbeit wird dies durch die Verknüpfung von Simulationen alternierender Skalen erreicht. Diese Arbeit beginnt mit der Untersuchung der Thermodynamik der Benzol-Hydratation mittels klassischer Molekulardynamik. Dann wird die Wechselwirkung zwischen Wasser und den [111]-Metalloberflächen von Gold und Nickel mittels eines Multiskalen-Verfahrens modelliert. In einem weiteren Schritt wird die Adsorbtion des Benzols an Metalloberflächen in wässriger Umgebung studiert. Abschließend wird die Modellierung erweitert und auch die Aminosäuren Alanin und Phenylalanin einbezogen. Dies eröffnet die Möglichkeit realistische Protein- Metall-Systeme in Computersimulationen zu betrachten und auf theoretischer Basis die Wechselwirkung zwischen Peptiden und Oberflächen für jede Art Peptide und Oberfläche vorauszusagen.
Resumo:
Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.
Resumo:
Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.
Resumo:
The objectives of this research dissertation were to develop and present novel analytical methods for the quantification of surface binding interactions between aqueous nanoparticles and water-soluble organic solutes. Quantification of nanoparticle surface interactions are presented in this work as association constants where the solutes have interacted with the surface of the nanoparticles. By understanding these nanoparticle-solute interactions, in part through association constants, the scientific community will better understand how organic drugs and nanomaterials interact in the environment, as well as to understand their eventual environmental fate. The biological community, pharmaceutical, and consumer product industries also have vested interests in nanoparticle-drug interactions for nanoparticle toxicity research and in using nanomaterials as drug delivery vesicles. The presented novel analytical methods, applied to nanoparticle surface association chemistry, may prove to be useful in assisting the scientific community to understand the risks, benefits, and opportunities of nanoparticles. The development of the analytical methods presented uses a model nanoparticle, Laponite-RD (LRD). LRD was the proposed nanoparticle used to model the system and technique because of its size, 25 nm in diameter. The solutes selected to model for these studies were chosen because they are also environmentally important. Caffeine, oxytetracycline (OTC), and quinine were selected to use as models because of their environmental importance and chemical properties that can be exploited in the system. All of these chemicals are found in the environment; thus, how they interact with nanoparticles and are transported through the environment is important. The analytical methods developed utilize and a wide-bore hydrodynamic chromatography to induce a partial hydrodynamic separation between nanoparticles and dissolved solutes. Then, using deconvolution techniques, two separate elution profiles for the nanoparticle and organic solute can be obtained. Followed by a mass balance approach, association constants between LRD, our model nanoparticle, and organic solutes are calculated. These findings are the first of their kind for LRD and nanoclays in dilute dispersions.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Biotribology is essentially the study of friction, lubrication and wear in biological systems. The area has been widely studied in relation to the behaviour of synovial joints and the design and behaviour of hip joint prostheses, but only in the last decade have serious studies been extended to the eye. In the ocular environment - as distinct from articular joints - wear is not a major factor. Both lubrication and friction are extremely important, however; this is particularly the case in the presence of the contact lens, which is a medical device important not only in vision correction but also as a therapeutic bandage for the compromised cornea. This chapter describes the difficulty in replicating experimental conditions that accurately reflect the complex nature of the ocular environment together with the factors such as load and rate of travel of the eyelid, which is the principal moving surface in the eye. Results obtained across a range of laboratories are compared.
Resumo:
While a great amount of attention is being given to the development of nanodevices, both through academic research and private industry, the field is still on the verge. Progress hinges upon the development of tools and components that can precisely control the interaction between light and matter, and that can be efficiently integrated into nano-devices. Nanofibers are one of the most promising candidates for such purposes. However, in order to fully exploit their potential, a more intimate knowledge of how nanofibers interact with single neutral atoms must be gained. As we learn more about the properties of nanofiber modes, and the way they interface with atoms, and as the technology develops that allows them to be prepared with more precisely known properties, they become more and more adaptable and effective. The work presented in this thesis touches on many topics, which is testament to the broad range of applications and high degree of promise that nanofibers hold. For immediate use, we need to fully grasp how they can be best implemented as sensors, filters, detectors, and switches in existing nano-technologies. Areas of interest also include how they might be best exploited for probing atom-surface interactions, single-atom detection and single photon generation. Nanofiber research is also motivated by their potential integration into fundamental cold atom quantum experiments, and the role they can play there. Combining nanofibers with existing optical and quantum technologies is a powerful strategy for advancing areas like quantum computation, quantum information processing, and quantum communication. In this thesis I present a variety of theoretical work, which explores a range of the applications listed above. The first work presented concerns the use of the evanescent fields around a nanofiber to manipulate an existing trapping geometry and therefore influence the centre-of-mass dynamics of the atom. The second work presented explores interesting trapping geometries that can be achieved in the vicinity of a fiber in which just four modes are allowed to propagate. In a third study I explore the use of a nanofiber as a detector of small numbers of photons by calculating the rate of emission into the fiber modes when the fiber is moved along next to a regularly separated array of atoms. Also included are some results from a work in progress, where I consider the scattered field that appears along the nanofiber axis when a small number of atoms trapped along that axis are illuminated orthogonally; some interesting preliminary results are outlined. Finally, in contrast with the rest of the thesis, I consider some interesting physics that can be done in one of the trapping geometries that can be created around the fiber, here I explore the ground states of a phase separated two-component superfluid Bose-Einstein condensate trapped in a toroidal potential.
Resumo:
We present measurements of the transmission spectra of 87Rb atoms at 780 nm in the vicinity of a nanofiber. A uniform distribution of fixed atoms around a nanofiber should produce a spectrum that is broadened towards the red due to shifts from the van der Waals potential. If the atoms are free, this also produces an attractive force that accelerates them until they collide with the fiber which depletes the steady-state density of near-surface atoms. It is for this reason that measurements of the van der Waals interaction are sparse. We confirm this by measuring the spectrum cold atoms from a magneto-optical trap around the fiber, revealing a symmetric line shape with nearly the natural linewidth of the transition. When we use an auxiliary 750 nm laser we are able to controllably desorb a steady flux of atoms from the fiber that reside near the surface (less than 50 nm) long enough to feel the van der Walls interaction and produce an asymmetric spectrum. We quantify the spectral asymmetry as a function of 750 nm laser power and find a maximum. Our model, which that takes into account the change in the density distribution, qualitatively explains the observations. In the future this can be used as a tool to more comprehensively study atom-surface interactions.
Resumo:
Bio-molecular interactions exist ubiquitously in all biological systems. This dissertation project was to construct a powerful surface plasmon resonance (SPR) sensor. The SPR system is used to study bio-molecular interactions in real time and without labeling. Surface plasmon is the oscillation of free electrons in metals coupled with surface electromagnetic waves. These surface electromagnetic waves provide a sensitive probe to study bio-molecular interactions on metal surfaces. This project resulted in the successful construction and optimization of a homemade SPR sensor and the development of several new powerful protocols to study bio-molecular interactions. It was discovered through this project that the limitations of earlier SPR sensors are related not only to the instrumentation design and operating procedures, but also to the complex behaviors of bio-molecules on sensor surfaces that were very different from that in solution. Based on these discoveries the instrumentation design and operating procedures were fully optimized. A set of existing sensor surface treatment protocols were tested and evaluated and new protocols were developed in this project. The new protocols have demonstrated excellent performance to study biomolecular interactions. The optimized home-made SPR sensor was used to study protein-surface interactions. These protein-surface interactions are responsible for many complex organic cell activities. The co-existence of different driving forces and their correlation with the structure of the protein and the surface make the understanding of the fundamental mechanism of protein-surface interactions a very challenging task. Using the improved SPR sensor, the electrostatic interaction and hydrophobic interaction were studied separately. The results of this project directly confirmed the theoretical predictions for electrostatic force between the protein and surface. In addition, this project demonstrated that the strength of the protein-surface hydrophobic interaction does not solely depend on the hydrophobicity as reported earlier. Surface structure also plays a significant role.
Resumo:
The chemical composition of sediments and rocks, as well as their distribution at theMartian surface, represent a long term archive of processes, which have formed theplanetary surface. A survey of chemical compositions by means of Compositional DataAnalysis represents a valuable tool to extract direct evidence for weathering processesand allows to quantify weathering and sedimentation rates. clr-biplot techniques areapplied for visualization of chemical relationships across the surface (“chemical maps”).The variability among individual suites of data is further analyzed by means of clr-PCA,in order to extract chemical alteration vectors between fresh rocks and their crusts andfor an assessment of different source reservoirs accessible to soil formation. Bothtechniques are applied to elucidate the influence of remote weathering by combinedanalysis of several soil forming branches. Vector analysis in the Simplex provides theopportunity to study atmosphere surface interactions, including the role andcomposition of volcanic gases
Resumo:
Les liposomes sont des structures sphériques formés par l'auto-assemblage de molécules amphiphiles sous forme d'une bicouche. Cette bicouche sépare le volume intérieur du liposome du milieu extérieur, de la même manière que les membranes cellulaires. Les liposomes sont donc des modèles de membranes cellulaires et sont formulés pour étudier les processus biologiques qui font intervenir la membrane (transport de molécules à travers la membrane, effets des charges en surface, interactions entre la matrice lipidique et d'autres molécules, etc.). Parce qu'ils peuvent encapsuler une solution aqueuse en leur volume intérieur, ils sont aussi utilisés aujourd'hui comme nanovecteurs de principes actifs. Nous avons formulé des liposomes non-phospholipidiques riches en stérol que nous avons appelés stérosomes. Ces stérosomes sont composés d'environ 30 % d'amphiphiles monoalkylés et d'environ 70 % de stérols (cholestérol, Chol, et/ou sulfate de cholestérol, Schol). Quand certaines conditions sont respectées, ces mélanges sont capables de former une phase liquide ordonnée (Lo) pour donner, par extrusion, des vésicules unilamellaires. Certaines de ces nouvelles formulations ont été fonctionnalisées de manière à libérer leur contenu en réponse à un stimulus externe. En incorporant des acides gras dérivés de l’acide palmitique possédant différents pKa, nous avons pu contrôler le pH auquel la libération débute. Un modèle mathématique a été proposé afin de cerner les paramètres régissant leur comportement de libération. En incorporant un amphiphile sensible à la lumière (un dérivé de l’azobenzène), les liposomes formés semblent répondre à une radiation lumineuse. Pour ce système, il serait probablement nécessaire de tracer le diagramme de phase du mélange afin de contrôler la photo-libération de l’agent encapsulé. Nous avons aussi formulé des liposomes contenant un amphiphile cationique (le chlorure de cétylpyridinium). En tant que nanovecteurs, ces stérosomes montrent un potentiel intéressant pour la libération passive ou contrôlée de principes actifs. Pour ces systèmes, nous avons développé un modèle pour déterminer l’orientation des différentes molécules dans la bicouche. La formation de ces nouveaux systèmes a aussi apporté de nouvelles connaissances dans le domaine des interactions détergents-lipides. Aux nombreux effets du cholestérol (Chol) sur les systèmes biologiques, il faut ajouter maintenant que les stérols sont aussi capables de forcer les amphiphiles monoalkylés à former des bicouches. Cette nouvelle propriété peut avoir des répercussions sur notre compréhension du fonctionnement des systèmes biologiques. Enfin, les amphiphiles monoalkylés peuvent interagir avec la membrane et avoir des répercussions importantes sur son fonctionnement. Par exemple, l'effet antibactérien de détergents est supposé être dû à leur insertion dans la membrane. Cette insertion est régie par l'affinité existant entre le détergent et cette dernière. Dans ce cadre, nous avons voulu développer une nouvelle méthode permettant d'étudier ces affinités. Nous avons choisi la spectroscopie Raman exaltée de surface (SERS) pour sa sensibilité. Les hypothèses permettant de déterminer cette constante d’affinité se basent sur l’incapacité du détergent à exalter le signal SERS lorsque le détergent est inséré dans la membrane. Les résultats ont été comparés à ceux obtenus par titration calorimétrique isotherme (ITC). Les résultats ont montré des différences. Ces différences ont été discutées.
Resumo:
L’objectif de ce mémoire de maîtrise est de développer et de caractériser diverses sources de neutres réactifs destinées à des études fondamentales des interactions plasmas-surfaces. Ce projet s’inscrit dans le cadre d’une vaste étude de la physique des interactions plasmas-parois mises en jeu dans les procédés de gravure par plasma des matériaux de pointe. Une revue de la littérature scientifique sur les diverses méthodes permettant de générer des faisceaux de neutres réactifs nous a permis de sélectionner deux types de sources. La première, une source pyrolitique, a été caractérisée par spectrométrie de masse en utilisant le C2F6 comme molécule mère. Nous avons montré que le C2F6 était dissocié à plus de 90% à 1000ºC et qu’il formait du CF4, lui-même dissocié en CF2 vers 900ºC. Ces résultats ont été validés à l’aide d’un modèle basé sur des calculs d’équilibres chimiques, qui a aussi prédit la formation de F à 1500ºC. La seconde source, un plasma entretenu par une onde électromagnétique de surfaces, a été caractérisée par spectroscopie optique d’émission et par interférométrie haute fréquence. Dans le cas du plasma d’argon créé par un champ électromagnétique (>GHz), nos travaux ont révélé une distribution en énergie des électrons à trois températures avec Te-low>Te-high