947 resultados para Atherosclerotic plaque


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High mechanical stress in atherosclerotic plaques at vulnerable sites, called critical stress, contributes to plaque rupture. The site of minimum fibrous cap (FC) thickness (FCMIN) and plaque shoulder are well-documented vulnerable sites. The inherent weakness of the FC material at the thinnest point increases the stress, making it vulnerable, and it is the big curvature of the lumen contour over FC which may result in increased plaque stress. We aimed to assess critical stresses at FCMIN and the maximum lumen curvature over FC (LCMAX) and quantify the difference to see which vulnerable site had the highest critical stress and was, therefore, at highest risk of rupture. One hundred patients underwent high resolution carotid magnetic resonance (MR) imaging. We used 352 MR slices with delineated atherosclerotic components for the simulation study. Stresses at all the integral nodes along the lumen surface were calculated using the finite-element method. FCMIN and LCMAX were identified, and critical stresses at these sites were assessed and compared. Critical stress at FC MIN was significantly lower than that at LCMAX (median: 121.55 kPa; inter quartile range (IQR) = [60.70-180.32] kPa vs. 150.80 kPa; IQR = [91.39-235.75] kPa, p < 0.0001). If critical stress at FCMIN was only used, then the stress condition of 238 of 352 MR slices would be underestimated, while if the critical stress at LCMAX only was used, then 112 out of 352 would be underestimated. Stress analysis at FCMIN and LCMAX should be used for a refined mechanical risk assessment of atherosclerotic plaques, since material failure at either site may result in rupture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been well accepted that over 50% of cerebral ischemic events are the result of rupture of vulnerable carotid atheroma and subsequent thrombosis. Such strokes are potentially preventable by carotid interventions. Selection of patients for intervention is currently based on the severity of carotid luminal stenosis. It has been, however, widely accepted that luminal stenosis alone may not be an adequate predictor of risk. To evaluate the effects of degree of luminal stenosis and plaque morphology on plaque stability, we used a coupled nonlinear time-dependent model with flow-plaque interaction simulation to perform flow and stress/strain analysis for stenotic artery with a plaque. The Navier-Stokes equations in the Arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations for the fluid. The Ogden strain energy function was used for both the fibrous cap and the lipid pool. The plaque Principal stresses and flow conditions were calculated for every case when varying the fibrous cap thickness from 0.1 to 2mm and the degree of luminal stenosis from 10% to 90%. Severe stenosis led to high flow velocities and high shear stresses, but a low or even negative pressure at the throat of the stenosis. Higher degree of stenosis and thinner fibrous cap led to larger plaque stresses, and a 50% decrease of fibrous cap thickness resulted in a 200% increase of maximum stress. This model suggests that fibrous cap thickness is critically related to plaque vulnerability and that, even within presence of moderate stenosis, may play an important role in the future risk stratification of those patients when identified in vivo using high resolution MR imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atherosclerosis is an inflammatory disease progressing over years via the accumulation of cholesterol in arterial intima with subsequent formation of atherosclerotic plaques. The stability of a plaque is determined by the size of its cholesterol-rich necrotic lipid core and the thickness of the fibrous cap covering it. The strength and thickness of the cap are maintained by smooth muscle cells and the extracellular matrix produced by them. A plaque with a large lipid core and a thin cap is vulnerable to rupture that may lead to acute atherothrombotic events, such as myocardial infarction and stroke. In addition, endothelial erosion, possibly induced by apoptosis of endothelial cells, may lead to such clinical events. One of the major causes of plaque destabilization is inflammation induced by accumulated and modified lipoproteins, and exacerbated by local aberrant shear stress conditions. Macrophages, T-lymphocytes and mast cells infiltrate particularly into the plaque’s shoulder regions prone to atherothrombotic events, and they are present at the actual sites of plaque rupture and erosion. Two major mechanisms of plaque destabilization induced by inflammation are extracellular matrix remodeling and apoptosis. Mast cells are bone marrow-derived inflammatory cells that as progenitors upon chemotactic stimuli infiltrate the target tissues, such as the arterial wall, differentiate in the target tissues and mediate their effects via the release of various mediators, typically in a process called degranulation. The released preformed mast cell granules contain proteases such as tryptase, chymase and cathepsin G bound to heparin and chondroitin sulfate proteoglycans. In addition, various soluble mediators such as histamine and TNF-alpha are released. Mast cells also synthesize many mediators such as cytokines and lipid mediators upon activation. Mast cells are capable of increasing the level of LDL cholesterol in the arterial intima by increasing accumulation and retention of LDL and by decreasing removal of cholesterol by HDL in vitro. In addition, by secreting proinflammatory mediators and proteases, mast cells may induce plaque destabilization by inducing apoptosis of smooth muscle and endothelial cells. Also in vivo data from apoE-/- and ldlr-/- mice suggest a role for mast cells in the progression of atherosclerosis. Furthermore, mast cell-deficient mice have become powerful tools to study the effects of mast cells in vivo. In this study, evidence suggesting a role for mast cells in the regulation of plaque stability is presented. In a mouse model genetically susceptible to atherosclerosis, mast cell deficiency (ldlr-/-/KitW-sh/W-sh mice) was associated with a less atherogenic lipid profile, a decreased level of lipid accumulation in the aortic arterial wall and a decreased level of vascular inflammation as compared to mast-cell competent littermates. In vitro, mast cell chymase-induced smooth muscle cell apoptosis was mediated by inhibition of NF-kappaB activity, followed by downregulation of bcl-2, release of cytochrome c, and activation of caspase-8, -9 and -3. Mast cell-induced endothelial cell apoptosis was mediated by chymase and TNF-alpha, and involved chymase-mediated degradation of fibronectin and vitronectin, and inactivation of FAK- and Akt-mediated survival signaling. Subsequently, mast cells induced inhibition of NF-kappaB activity and activation of caspase-8 and -9. In addition, possible mast cell protease-mediated mechanisms of endothelial erosion may include degradation of fibronectin and VE-cadherin. Thus, the present results suggest a role for mast cells in destabilization of atherosclerotic plaques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to compare the plaque morphology between coronary and peripheral arteries using intravascular ultrasound (IVUS). Methods: IVUS was performed in 68 patients with coronary and 93 with peripheral artery lesions (29 carotid, 50 renal, and 14 iliac). Plaques were classified as fibroatheroma (VH-FA) (further subclassified as thin-capped [VH-TCFA] and thick-capped [VH-ThCFA]), fibrocalcific plaque (VH-FC) and pathological intimal thickening (VH-PIT). Results: Plaque rupture (13% of coronary, 7% of carotid, 6% of renal, and 7% of iliac arteries; P=NS) and VH-TCFA (37% of coronary, 24% of carotid, 16% of renal, and 7% of iliac arteries; P=0.02) was observed in all arteries. Compared to coronary arteries, VH-FA was less frequently observed in renal (P<0.001) and iliac arteries (P<0.006), while VH-PIT and VH-FC were prevalent in both of these peripheral arteries. Lesions with positive remodeling demonstrated more characteristics of VH-FA in coronary, carotid, and renal arteries compared to those with intermediate/negative remodeling (all P<0.01). There was positive relationship between RI and percent necrotic core area in all four arteries. Conclusions: Atherosclerotic plaque phenotypes were heterogeneous among four different arteries. In contrast, the associations of remodeling mode with plaque phenotype and composition were similar among the various arterial beds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atherosclerosis is a complex disease in which vessels develop plaques comprising dysfunctional endothelium, monocyte derived lipid laden foam cells and activated lymphocytes. Considering that humans and animal models of the disease develop quite distinct plaques, we used human plaques to search for proteins that could be used as markers of human atheromas. Phage display peptide libraries were probed to fresh human carotid plaques, and a bound phage homologous to plexin B1, a high affinity receptor for CD100, was identified. CD100 is a member of the semaphorin family expressed by most hematopoietic cells and particularly by activated T cells. CD100 expression was analyzed in human plaques and normal samples. CD100 mRNA and protein were analyzed in cultured monocytes, macrophages and foam cells. The effects of CD100 in oxLDL-induced foam cell formation and in CD36 mRNA abundance were evaluated. Human atherosclerotic plaques showed strong labeling of CD100/SEMA4D. CD100 expression was further demonstrated in peripheral blood monocytes and in in vitro differentiated macrophages and foam cells, with diminished CD100 transcript along the differentiation of these cells. Incubation of macrophages with CD100 led to a reduction in oxLDL-induced foam cell formation probably through a decrease of CD36 expression, suggesting for the first time an atheroprotective role for CD100 in the human disease. Given its differential expression in the numerous foam cells and macrophages of the plaques and its capacity to decrease oxLDL engulfment by macrophages we propose that CD100 may have a role in atherosclerotic plaque development, and may possibly be employed in targeted treatments of these atheromas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SCOPE: Xanthohumol (XN), a prenylated antioxidative and anti-inflammatory chalcone from hops, exhibits positive effects on lipid and glucose metabolism. Based on its favorable biological properties, we investigated whether XN attenuates atherosclerosis in western-type diet-fed apolipoprotein-E-deficient (ApoE(-/-) ) mice. METHODS AND RESULTS: XN supplementation markedly reduced plasma cholesterol concentrations, decreased atherosclerotic lesion area, and attenuated plasma concentrations of the proinflammatory cytokine monocyte chemoattractant protein 1. Decreased hepatic triglyceride and cholesterol content, activation of AMP-activated protein kinase, phosphorylation and inactivation of acetyl-CoA carboxylase, and reduced expression levels of mature sterol regulatory element-binding protein (SREBP)-2 and SREBP-1c mRNA indicate reduced lipogenesis in the liver of XN-fed ApoE(-/-) mice. Concomitant induction of hepatic mRNA expression of carnitine palmitoyltransferase-1a in ApoE(-/-) mice-administered XN suggests increased fatty acid beta-oxidation. Fecal cholesterol concentrations were also markedly increased in XN-fed ApoE(-/-) mice compared with mice fed western-type diet alone. CONCLUSION: The atheroprotective effects of XN might be attributed to combined beneficial effects on plasma cholesterol and monocyte chemoattractant protein 1 concentrations and hepatic lipid metabolism via activation of AMP-activated protein kinase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aged population have an increased susceptibility to infection, therefore function of the innate immune system may be impaired as we age. Macrophages, and their precursors monocytes, play an important role in host defence in the form of phagocytosis, and also link the innate and adaptive immune system via antigen presentation. Classically-activated 'M1' macrophages are pro-inflammatory, which can be induced by encountering pathogenic material or pro-inflammatory mediators. Alternatively activated 'M2' macrophages have a largely reparative role, including clearance of apoptotic bodies and debris from tissues. Despite some innate immune receptors being implicated in the clearance of apoptotic cells, the process has been observed to have a dominant anti-inflammatory phenotype with cytokines such as IL-10 and TGF-ß being implicated. The atherosclerotic plaque contains recruited monocytes and macrophages, and is a highly inflammatory environment despite high levels of apoptosis. At these sites, monocytes differentiate into macrophages and gorge on lipoproteins, resulting in formation of 'foam cells' which then undergo apoptosis, recruiting further monocytes. This project seeks to understand why, given high levels of apoptosis, the plaque is a pro-inflammatory environment. This phenomenon may be the result of the aged environment or an inability of foam cells to elicit an anti-inflammatory effect in response to dying cells. Here we demonstrate that lipoprotein treatment of macrophages in culture results in reduced capacity to clear apoptotic cells. The effect of lipoprotein treatment on apoptotic cell-mediated immune modulation of macrophage function is currently under study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atherosclerotic plaque rupture has been extensively considered as the leading cause of death in western countries. It is believed that high stresses within plaque can be an important factor on triggering the rupture of the plaque. Stress analysis in the coronary and carotid arteries with plaque have been developed by many researchers from 2D to 3-D models, from structure analysis only to the Fluid-Structure Interaction (FSI) models[1].

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Inflammation is a recognized risk factor for the vulnerable atherosclerotic plaque. The study explores the relationship between the degree of Magnetic Resonance (MR)"defined inflammation using Ultra Small Super-Paramagnetic Iron Oxide (USPIO) particles and the severity of luminal stenosis in asymptomatic carotid plaques. METHODS Seventy-one patients with an asymptomatic carotid stenosis of ĝ‰¥40% underwent multi-sequence USPIO-enhanced MR imaging. Stenosis severity was measured according to the NASCET and ECST methods. RESULTS No demonstrable relationship between inflammation as measured by USPIO-enhanced signal change and the degree of luminal stenosis was found. CONCLUSIONS Inflammation and stenosis are likely to be independent risk factors, although this needs to be further validated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Inflammation is a recognized risk factor for the vulnerable atherosclerotic plaque. The aim of this study was to explore whether there is a difference in the degree of Magnetic Resonance (MR) defined inflammation using Ultra Small Super-Paramagnetic Iron Oxide (USPIO) particles, within carotid atheroma in completely asymptomatic individuals and the asymptomatic carotid stenosis in a cohort of patients undergoing coronary artery bypass grafting (CABG). Methods: 10 patients awaiting CABG with asymptomatic carotid disease and 10 completely asymptomatic individuals with no documented coronary artery disease underwent multi-sequence MR imaging before and 36 hours post USPIO infusion. Images were manually segmented into quadrants and signal change in each quadrant, normalised to adjacent muscle signal, was calculated following USPIO administration. Results: The mean percentage of quadrants showing signal loss was 94% in the CABG group, compared to 24% in the completely asymptomatic individuals (p < 0.001). The carotid plaques from the CABG patients showed a significant mean signal intensity decrease of 16.4% after USPIO infusion (95% CI 10.6% to 22.2%; p < 0.001). The truly asymptomatic plaques showed a mean signal intensity increase (i.e. enhancement) after USPIO infusion of 8.4% (95% CI 2.6% to 14.2%; p = 0.007). The mean signal difference between the two groups was 24.9% (95% CI 16.7% to 33.0%; p < 0.001). Conclusions: These findings are consistent with the hypothesis that inflammatory atheroma is a systemic disease. The carotid territory is more likely to take up USPIO if another vascular territory is symptomatic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High resolution, USPIO-enhanced MR imaging can be used to identify inflamed atherosclerotic plaque. We report a case of a 79-year-old man with a symptomatic carotid stenosis of 82%. The plaque was retrieved for histology and finite element analysis (FEA) based on the preoperative MR imaging was used to predict maximal Von Mises stress on the plaque. Macrophage location correlated with maximal predicted stresses on the plaque. This supports the hypothesis that macrophages thin the fibrous cap at points of highest stress, leading to an increased risk of plaque rupture and subsequent stroke.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Macrophage cells within inflammatory lesions are exposed to a wide range of degrading and cytotoxic molecules including reactive oxygen species. Unlike neutrophils, macrophages do not normally die in this environment but continue to generate oxidants, phagocytose cellular remains, and release a range of cytoactive agents which modulate the immune response. It is this potential of the macrophage cell to survive in an oxidative environment that allows the growth and complexity of advanced atherosclerotic plaques. This review will examine the oxidants encountered by macrophages within an atherosclerotic plaque and describe some of the potential antioxidant mechanisms which enable macrophages to function within inflammatory lesions. Ascorbate, alpha-tocopherol, and glutathione appear to be central to the protection of macrophages yet additional antioxidant mechanisms appear to be involved. gamma-Interferon causes macrophages to generate 7,8dihydroneopterin/neopterin and 3-hydroxyanthranilic acid both of which have antioxidant properties. Manganese superoxide dismutase is also upregulated in macrophages. The evidence that these antioxidants provide further protection, so allowing the macrophage cells to survive within sites of chronic inflammation such as atherosclerotic plaques, will be described.