874 resultados para Asymmetric aqueous capacitor
Resumo:
An asymmetric aqueous capacitor was constructed by employing zeolite-templated carbon (ZTC) as a pseudocapacitive positive electrode and KOH-activated carbon as a stable negative electrode. The asymmetric capacitor can be operated with the working voltage of 1.4 V, and exhibits an energy density that is comparable to those of conventional capacitors utilizing organic electrolytes, thanks to the large pseudocapacitance of ZTC. Despite relatively thick electrode (0.2 mm) configuration, the asymmetric capacitor could be well operated under a current density of 500 mA g −1.
Resumo:
In this work, alpha-Co(OH)(2) is electrodeposited onto carbon nanofoam forming a composite electrode operating in a potential window of 2 V in aqueous medium. Prior to electrodeposition, the carbon nanofoam substrate is subjected to a functionalization process, which leads to an increase of about 40% in its specific capacitance value. Formation of cobalt hydroxide clusters onto the functionalized carbon nanofoam by pulse electrodeposition further enhances the specific capacitance of the electrode. The combination of these factors with an enlarged working potential window, results in a material with specific capacitance close to 300 F g(-1) at current density of 1 A g(-1), considering the total mass loading of the composite. This suggests the potential application of the prepared composites in high energy density electrochemical supercapacitors. (c) 2015 Elsevier B.V. All rights reserved.
Resumo:
Electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, are energy storage devices with properties between batteries and conventional capacitors. EC have evolved through several generations. The trend in EC is to combine a double-layer electrode with a battery-type electrode in an asymmetric capacitor configuration. The double-layer electrode is usually an activated carbon (AC) since it has high surface area, good conductivity, and relatively low cost. The battery-type electrode usually consists of PbO2 or Ni(OH)2. In this research, a graphitic carbon foam was impregnated with Co-substituted Ni(OH)2 using electrochemical deposition to serve as the positive electrode in the asymmetric capacitor. The purpose was to reduce the cost and weight of the ECs while maintaining or increasing capacitance and gravimetric energy storage density. The XRD result indicated that the nickel-carbon foam electrode was a typical α-Ni(OH)2. The specific capacitance of the nickel-carbon foam electrode was 2641 F/g at 5 mA/cm2, higher than the previously reported value of 2080 F/g for a 7.5% Al-substituted α-Ni(OH)2 electrode. Three different ACs (RP-20, YP-50F, and Ketjenblack EC-600JD) were evaluated through their morphology and electrochemical performance to determine their suitability for use in ECs. The study indicated that YP-50F demonstrated the better overall performance because of the combination of micropore and mesopore structures. Therefore, YP-50F was chosen to combine with the nickel-carbon foam electrode for further evaluation. Six cells with different mass ratios of negative to positive active mass were fabricated to study the electrochemical performance. Among the different mass ratios, the asymmetric capacitor with the mass ratio of 3.71 gave the highest specific energy and specific power, 24.5 W.h/kg and 498 W/kg, respectively.
Resumo:
Electrochemical capacitors have been an important development in recent years in the field of energy storage. Capacitors can be developed by utilizing either double layer capacitance at the electrode/solution interfaces alone or in combination with a battery electrode associated with a faradic redox process in one electrode. An asymmetric capacitor consisting of electrochemically deposited nickel hydroxide, supported on carbon foam as a positive electrode and carbon sheet as a negative electrode has been successfully assembled and cycled. One objective of this study has been to demonstrate the viability of the nickel carbon foam positive electrode, especially in terms of cycle life. Electrochemical characterization shows stable, high cycle performance in 26 wt. % KOH electrolyte with a maximum energy density of 4.1 Wh/Kg and a relaxation time constant of 6.24 s. This cell has demonstrated high cycle life, 14,500 cycles, with efficiency better than 98%. In addition, the cell failure mechanism and self-discharge behavior of the aforesaid capacitor are analyzed.
Resumo:
The use of two different materials as electrodes allows the construction of asymmetric and hybrid capacitors cells with enhanced energy and power density. This approach is especially well-suited for overcoming the limitations of pseudocapacitive materials that provide a huge capacitance boost, but in a limited potential window. In this work, we introduce the concepts and protocols that are required for a successful design of such systems, which is illustrated by the construction of an asymmetric hybrid cell where a zeolite-templated carbon and an ultraporous activated carbon have been combined.
Resumo:
Over the past decade, a great effort has been made by the chemical community to improve the efficiency of organic transformations and allow sustainable processes. Merging the use of supported and recyclable organocatalysts and aqueous conditions for the asymmetric synthesis of valuable molecules, has led to outstanding contributions in the area of green chemistry. Recent progresses in the field include the implementation of these methodologies in the large scale production of chiral molecules using automated flow chemistry.
Resumo:
The Jacobsen catalyst, Mn(salen), was immobilized in chitosan membrane. The obtained Mn(salen)-Chit was characterized by thermogravimetric analysis (TC), differential thermal analysis (DTA), differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), degree of N-acetylation by (1)H NMR, and UV-vis spectroscopy. The UV-vis absorption spectrum of the encapsulated catalyst displayed the typical bands of the Jacobsen catalyst, and the FT-IR presented an absorption band characteristic of the imines present in the Jacobsen catalyst. The chitosan membranes were available, in a biphasic system, as a catalytic barrier between two different phases: an organic substrate phase (cyclooctene or styrene) and an aqueous solution of either m-CPBA, t-BuOOH or H(2)O(2), and dismissing the need for phase transfer agents and leading to better product yields compared with the catalyst in homogeneous medium. This new catalyst did not leach from the support and was reused many times, leading to high turnover frequencies. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Cellulose acetate (CA)-silver (Ag) nanocomposite asymmetric membranes were prepared via the wet-phase inversion method by dispersing polyvinylpirrolydone-protected Ag nanoparticles in the membrane casting solutions of different compositions. Silver nanoparticles were synthesized ex situ and added to the casting solution as a concentrated aqueous colloidal dispersion. The effects of the dispersion addition on the structure and on the selective permeation properties of the membranes were studied by comparing the nanocomposites with the silver-free materials. The casting solution composition played an important role in the adequate dispersion of the silver nanoparticles in the membrane. Incorporation of nanoscale silver and the final silver content resulted in structural changes leading to an increase in the hydraulic permeability and molecular weight cut-off of the nanocomposite membranes. (c) 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41796.
Resumo:
Regular consumption of green tea polyphenols (GTP) is thought to reduce the risk of cardiovascular disease (CVD) but has also been associated with liver toxicity. The present trial aimed to assess the safety and potential CVD health beneficial effects of daily GTP consumption. We conducted a placebo-controlled parallel study to evaluate the chronic effects of GTP on liver function and CVD risk biomarkers in healthy men. Volunteers (treatment: n = 17, BMI 26.7 +/- 3.3 kg/m(2), age 41 +/- 9 y; placebo, n = 16, BMI 25.4 +/- 3.3 kg/m(2), age 40 +/- 10 y) consumed for 3 wk 6 capsules per day (2 before each principal meal) containing green tea extracts (equivalent to 714 mg/d GTP) or placebo. At the beginning and end of the intervention period, we collected blood samples from fasting subjects and measured vascular tone using Laser Doppler lontophoresis. Biomarkers of liver function and CVD risk (including blood pressure, plasma lipids, and asymmetric dimethylarginine) were unaffected by GTP consumption. After treatment, the ratio of total:HDL cholesterol was significantly reduced in participants taking GTP capsules compared with baseline. Endothelial-dependent and -independent vascular reactivity did not significantly differ between treatments. In conclusion, the present data suggests that the daily consumption of high doses of GTP by healthy men for 3 wk is safe but without effects on CVD risk biomarkers other than the total:HDL cholesterol ratio. J. Nutr. 139: 58-62, 2009.
Resumo:
This thesis evaluates a novel asymmetric capacitor incorporating a carbon foam supported nickel hydroxide positive electrode and a carbon black negative electrode. A series of symmetric capacitors were prepared to characterize the carbon black (CB) negative electrode. The influence of the binder, PTFE, content on the cell properties was evaluated. X-ray diffraction characterization of the nickel electrode during cycling is also presented. The 3 wt% and 5 wt% PTFE/CB symmetric cells were examined using cyclic voltammetry (CV) and constant current charge/discharge measurements. As compared with symmetric cells containing more PTFE, the 3 wt% cell has the highest average specific capacitance, energy density and power density over 300 cycles, 121.8 F/g, 6.44 Wh/kg, and 604.1 W/kg, respectively. Over the 3 to 10 wt% PTFE/CB range, the 3 wt% sample exhibited the lowest effective resistance and the highest BET surface area. Three asymmetric cells (3 wt% PTFE/CB negative electrode and a nickel positive) were fabricated; cycle life was examined at 3 current densities. The highest average energy and power densities over 1000 cycles were 20 Wh/kg (21 mA/cm2) and 715 W/kg (31 mA/cm2), respectively. The longest cycle life was 11,505 cycles (at 8 mA/cm2), with an average efficiency of 79% and an average energy density of 14 Wh/kg. The XRD results demonstrate that the cathodically deposited nickel electrode is a typical α-Ni(OH)2 with the R3m structure (ABBCCA stacking); the charged electrodes are 3γ-NiOOH with the same stacking as the α-type; the discharged electrodes (including as-formed electrode) are aged to β’-Ni(OH)2 (a disordered β) with the P3m structure (ABAB stacking). A 3γ remnant was observed.
Resumo:
We have studied liquid-liquid phase separation in aqueous ternary solutions of calf lens gamma-crystallin proteins. Specifically, we have examined two ternary systems containing gamma s--namely, gamma IVa with gamma s in water and gamma II with gamma s in water. For each system, the phase-separation temperatures (Tph (phi)) alpha as a function of the overall protein volume fraction phi at various fixed compositions alpha (the "cloud-point curves") were measured. For the gamma IVa, gamma s, and water ternary solution, a binodal curve composed of pairs of coexisting points, (phi I, alpha 1) and (phi II, alpha II), at a fixed temperature (20 degrees C) was also determined. We observe that on the cloud-point curve the critical point is at a higher volume fraction than the maximum phase-separation temperature point. We also find that typically the difference in composition between the coexisting phases is at least as significant as the difference in volume fraction. We show that the asymmetric shape of the cloud-point curve is a consequence of this significant composition difference. Our observation that the phase-separation temperature of the mixtures in the high volume fraction region is strongly suppressed suggests that gamma s-crystallin may play an important role in maintaining the transparency of the lens.
Resumo:
Recoverable (Sa)-binam-l-prolinamide in combination with benzoic acid is used as catalysts in the direct aldol reaction between cycloalkyl, alkyl, and α-functionalized ketones and aldehydes under solvent-free reaction conditions. Three different methods are assayed: simple conventional magnetic stirring, magnetic stirring after previous dissolution in THF and evaporation, and ball mill technique. These procedures allow one to reduce not only the amount of required ketone to 2 equiv but also the reaction time to give the aldol products with regio-, diastereo-, and enantioselectivities comparable to those in organic or aqueous solvents. Generally anti-isomers are mainly obtained with enantioselectivities up to 97%. The reaction can be carried out under these conditions also using aldehydes as nucleophiles, yielding after in situ reduction of the aldol products the corresponding chiral 1,3-diols with moderate to high enantioselectivities mainly as anti-isomers. The aldol reaction has been studied by the use of positive ESI-MS technique, providing the evidence of the formation of the corresponding enamine−iminium intermediates.
Resumo:
Composites consisting of polyaniline (PANI) coatings inside the microporosity of an activated carbon fibre (ACF) were prepared by electrochemical and chemical methods. Electrochemical characterization of both composites points out that the electrodes with polyaniline show a higher capacitance than the pristine porous carbon electrode. These materials have been used to develop an asymmetric capacitor based on activated carbon (AC) as negative electrode and an ACF–PANI composite as positive electrode in H2SO4 solution as electrolyte. The presence of a thin layer of polyaniline inside the porosity of the activated carbon fibres avoids the oxidation of the carbon material and the oxygen evolution reaction is produced at more positive potentials. This capacitor was tested in a maximum cell voltage of 1.6 V and exhibited high energy densities, calculated for the unpackaged active materials, with values of 20 W h kg−1 and power densities of 2.1 kW kg−1 with excellent cycle lifetime (90% during the first 1000 cycles) and high coulombic efficiency.
Resumo:
Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors are optimized using the capacitance and the potential stability limits of the electrodes, with the reliability of the design largely depending on the accuracy and the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.
Resumo:
This review discusses synthesis of enantiopure sulfoxides through the asymmetric oxidation of prochiral sulfides. The use of metal complexes to promote asymmetric sulfoxidation is described in detail, with a particular emphasis on the synthesis of biologically active sulfoxides. The use of non-metal-based systems, such as oxaziridines, chiral hydroperoxides and peracids, as well as enzyme-catalyzed sulfoxidations is also examined.