956 resultados para Association Rate


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rate coefficients for radiative association of SO, SO+, and S-2 are estimated. For temperatures ranging from 300 to 14,000 K, the direct radiative association rate coefficients are found to vary with temperature from 1.73 x 10(-19) to 7.29 x 10(-19) cm(3) s(-1) and from 1.49 x 10(-21) to 3.70 x 10(-19) cm(3) s(-1) for S-2 and SO, respectively. The rate coefficients for formation through the inverse predissociation for S-2 are found to vary from 3.59 x 10(-18) to 1.44 x 10(-20) cm(3) s(-1). For SO+, the direct rate coefficient varies rapidly with temperature from 3.62 x 10(-27) cm(3) s(-1) at 2000 K to 2.34 x 10(-20) cm(3) s(-1) at 14,000 K. The direct radiative association rate coefficients increase with the increase in temperature, but the inverse predissociation rate coefficients decrease with the increase in temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The rate coefficients for the formation of carbon monophosphide (CP) and silicon monophosphide (SiP) by radiative association are estimated for temperatures ranging from 300 to 14 100 K. In this temperature range, the radiative association rate coefficients are found to vary from 1.14 x 10(-18) to 1.62 x 10(-18) cm(3) s(-1) and from 3.73 x 10(-20) to 7.03 x 10(-20) cm(3) s(-1) for CP and SiP, respectively. In both cases, rate coefficients increase slowly with the increase in temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Title from cover.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The insulin-like growth factor (IGF) system is composed of ligands and receptors which regulate cell proliferation, survival, differentiation and migration. Some functions are regulated via intracellular signaling cascades, others by involvement of the extracellular milieu, including binding proteins and other extracellular matrix proteins. However, understanding of their functions and the exact nature of these interactions remains incomplete. Methods: IGF-I was PEGylated at its lysine sites - K27, K65 and K68. Binding of PEG-IGF-I to the IGFBPs was analyzed using BIAcore and its ability to activate the IGF-IR was assessed using IGF-IR phosphorylation assay. Furthermore, functional consequences of PEGylating the lysine residues of IGF-I was investigated using cell viability and cell migration assays. In addition, particular downstream signaling pathways regularly implicated in these mechanisms were also dissected using phospho-AKT and phospho-ERK1/2 assays. Results: In this study, IGF-I specifically PEGylated at lysine 27 (PEG-K27), 65 (PEG-K65) or 68 (PEG-K68) were employed. Receptor phosphorylation was only reduced by 2-fold with PEG-K65 and PEG-K68 over all the time points tested, and as observed in two cell types, 3T3 fibroblasts and MCF-7 breast cancer cells. PEGylation at K27 resulted in a much larger effect, with more than 10-fold lower activation for 3T3 fibroblasts and a ~3 fold reduced IGF-IR activation for MCF-7 breast cancer cells over 15 minutes. In addition, all PEG-IGF-I variants demonstrated a ten-fold reduction in the association rate to IGF binding proteins (IGFBPs). Functionally, all PEG variants completely lost their ability to induce cell migration in the presence of IGFBP-3/vitronectin (VN) complexes as compared to IGF-I; in contrast, cell viability was fully preserved. Further investigations into the downstream signaling pathways revealed that the PI3-K/AKT pathway was preferentially affected upon treatment with the PEG-IGF-I variants compared to the MAPK/ERK pathway. Conclusion: PEGylation of IGF-I has an impact on cell migration but not cell viability. General significance: PEG-IGF-I may differentially modulate IGF-I mediated functions that are dependent on its interaction with its receptor as well as key extracellular proteins such as VN and IGFBPs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gemini viral assembly and transport of viral DNA into nucleus for replication, ssentially involve DNA-coat protein interactions. The kinetics of interaction of Cotton LeafCtirl Kokhran Virus-Dabawali recombinant coat protein (rCP) with DNA was studied by electrophoretic mobility shift assay (EMSA) and Surface plasmon resonance (SPR). The rCP interacted with ssDNA with a K-A, of 2.6 +/- 0.29 x 10(8) M-1 in a sequence non-specific manner. The CP has a conserved C2H2 type zinc finger motif composed of residues C68, C72, H81 and H85. Mutation of these residues to alanine resulted in reduced binding to DNA probes. The H85A mutant rCP showed the least binding with approximately 756 fold loss in the association rate and a three order magnitude decrease in the binding affinity as compared to rCP. The CP-DNA interactions via the zinc finger motif could play a Crucial role ill Virus assembly and in nuclear transport. (C) 2009 Elsevier Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kinetic studies of macromolecular ligand-ligate interaction have generated ample interest since the advent of plasmon resonance based instruments like BIAcore. Most of the studies reported in literature assume a simple 1 : 1 Langmuir binding and complete reversibility of the system. However we observed that in a high affinity antigen-antibody system [human chorionic gonadotropin-monoclonal antibody (hCG-mAb)] dissociation is insignificant and the sensogram data cannot be used to measure the equilibrium and kinetic parameters. At low concentrations of mAb the complete sensogram could be fitted to a single exponential. Interestingly we found that at higher mAb concentrations, the binding data did not conform to a simple bimolecular model. Instead, the data fitted a two-step model, which may be because of surface heterogeneity of affinity sites. In this paper, we report on the global fit of the sensograms. We have developed a method by which a single two-minute sensogram can be used in high affinity systems to measure the association rate constant of the reaction and the functional capacity of the ligand (hCG) immobilized on the chip. We provide a rational explanation for the discrepancies generally observed in most of the BIAcore sensograms

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A kinetic study of the tumor-associated galactopyranosyl-(1→3)-2-acetamido-2-deoxy-α-d-galactopyranoside (T-antigen) with lectin peanut agglutinin is described. The disaccharide antigen was synthesized by chemical methods and was functionalized suitably for immobilization onto a carboxy-methylated sensor chip. The ligand immobilized surface was allowed interaction with the lectin peanut agglutinin, which acted as the analyte and the interaction was studied by the surface plasmon resonance method. The ligand—lectin interaction was characterized by the kinetic on-off rates and a bivalent analyte binding model was found to describe the observed kinetic constants. It was identified that the antigen-lectin interaction had a faster association rate constant (k a1) and a slower dissociation rate constant (k d1) in the initial binding step. The subsequent binding step showed much reduced kinetic rates. The antigen-lectin interaction was compared with the kinetic rates of the interaction of a galactopyranosyl-(1→4)-β-d-galactopyranoside derivative and a mannopyranoside derivative with the lectin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The binding of winged bean basic agglutinin (WBA I) to 4-methylumbelliferyl (MeUmb) galactosides was examined by extrinsic fluorescence titration and stopped-flow spectrofluorimetry. Upon binding to WBA I, MeUmb alpha-galactosides show quenching in fluorescence intensity, decrease in UV absorbance with a concomitant blue shift, and decrease in fluorescence excited-state lifetimes. However, their beta-analogues show enhancement in fluorescence intensity, increase in UV absorbance with a red shift, and an increase in fluorescence excited-state lifetimes. This implies that the umbelliferyl groups of alpha- and beta-galactosides experience non-polar and polar microenvironments, respectively, upon binding to WBA I. Replacement of the anomeric hydroxyl group of galactose by 4-methylumbelliferyl moiety increases the affinity of resulting saccharides. Substitution of C-2 hydroxyl of galactose by an acetamido group leads to increased affinity due to a favorable entropy change. This suggests that acetamido group of MeUmb-alpha/beta-GalNAc binds to a relatively non-polar subsite of WBA I. Most interestingly, this substitution also reduces the association rate constants dramatically. Inspection of the activation parameters reveals that the enthalpy of activation is the limiting factor for the differences in the forward rate constants for these saccharides and the entropic contribution to the activation energy is small

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nature of binding of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-colcemid (NBD-colcemid), an environment-sensitive fluorescent analogue of colchicine, to tubulin was tested. This article reports the first fluorometric study where two types of binding site of colchincine analogue on tubulin were detected. Binding of NBD-colcemid to one of these sites equilibrates slsowly. NBD-colcemid competes with colchicine for this site. Binding of NBD-colcemid to this site also causes inhibition of tubulin self-assembly. In contrast, NBD-colcemid binding to the other site is characterised by rapid equilibration and lack of competition with colchicine. Nevertheless, binding to this site is highly specific for the cholchicine nucleus, as alkyl-NBD analogues have no significant binding activity. Fast-reaction-kinetic studies gave 1.76 × 105 M–1 s–1 for the association and 0.79 s–1 for the dissociation rate constants for the binding of NBD-colcemid to the fast site of tubulin. The association rate constants for the two phases of the slow site are 0.016 × 10–4 M–1 s–1 and 3.5 × 10–4 M–1 respectively. These two sites may be related to the two sites of colchicine reported earlier, with binding characteristics altered by the increased hydrophobic nature of NBD-colcemid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The binding of Artocarpus integrifolia lectin (jacalin) to 4-methylumbelliferyl (Meumb)-glycosides, Gal alpha Meumb, Gal beta Meumb, GalNAc alpha Meumb, GalNAc beta-Meumb, and Gal beta 3GalNAc beta Meumb was examined by extrinsic fluorescence quenching titration and stopped flow spectrofluorimetry. The binding was characterized by 100% quenching of fluorescence of Meumb-glycosides. Their association constants range from 2.0 x 10(4) to 1.58 x 10(6) M-1 at 15 degrees C. Entropic contribution is the major stabilizing force for avid binding of Meumb-glycosides indicating the existence of a hydrophobic site that is complementary to their methylumbelliferyl group. The second order association rate constants for interaction of these sugars with lectin at 15 degrees C vary from 8.8 x 10(5) to 3.24 x 10(6) M-1 S-1, at pH 7.2. The first order dissociation rate constants range from 2.30 to 43.0 S-1 at 15 degrees C. Despite the differences in their association rate constants, the overall values of association constants for these saccharides are determined by their dissociation rate constants. The second order rate constant for the association of Meumb-glycosides follows a pattern consistent with the magnitude of the activation energies involved therin. Activation parameters for association of all ligands illustrate that the origin of the barrier between binding of jacalin to Meumb-glycosides is entropic, and the enthalpic contribution is small. A correlation between these parameters and the structure of the ligands on the association rates underscores the importance of steric factors in determining protein saccharide recognitions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Binding of 13C-labeled N-acetylgalactosamine (13C-GalNAc) and N-trifluoroacetylgalactosamine (19F-GalNAc) to Artocarpus integrifolia agglutinin has been studied using 13C and 19F nuclear magnetic resonance spectroscopy, respectively. Binding of these saccharides resulted in broadening of the resonances, and no change in chemical shift was observed, suggesting that the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc experience a magnetically equivalent environment in the lectin combining site. The alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc were found to be in slow exchange between free and protein bound states. Binding of 13C-GalNAc was studied as a function of temperature. From the temperature dependence of the line broadening, the thermodynamic and kinetic parameters were evaluated. The association rate constants obtained for the alpha-anomers of 13C-GalNAc and 19F-GalNAc (k+1 = 1.01 x 10(5) M-1.s-1 and 0.698 x 10(5) M-1.s-1, respectively) are in close agreement with those obtained for the corresponding beta-anomers (k+1 = 0.95 x 10(5) M-1.s-1 and 0.65 x 10(5) M-1.s-1, respectively), suggesting that the two anomers bind to the lectin by a similar mechanism. In addition these values are several orders of magnitude slower than those obtained for diffusion controlled processes. The dissociation rate constants obtained are 49.9, 56.9, 42, and 43 s-1, respectively, for the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc. A two-step mechanism has been proposed for the interaction of 13C-GalNAc and 19F-GalNAc with A. integrifolia lectin in view of the slow association rates and high activation entropies. The thermodynamic parameters obtained for the association and dissociation reactions suggest that the binding process is entropically favored and that there is a small enthalpic contribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluorescence and stopped-flow spectrophotometric studies on three plant lectins fromPsophocarpus tetragonolobus (winged bean),Glycine max (soybean) andArtocarpus integrifolia (jack fruit) have been studied usingN-dansylgalactosamine as a fluorescent ligand. The best monosaccharide for the winged bean agglutinin I (WBA I) and soybean (SBA) is Me-agrGalNAc and for jack fruit agglutinin (JFA) is Me-agrGal. Examination of the percentage enhancement and association constants (1.51×106, 6.56×106 and 4.17×105 M–1 for SBA, WBA I and JFA, respectively) suggests that the combining regions of the lectins SBA and WBA I are apolar whereas that of JFA is polar. Thermodynamic parameters obtained for the binding of several monosaccharides to these lectins are enthalpically favourable. The binding of monosaccharides to these lectins suggests that the-OH groups at C-1, C-2, C-4 and C-6 in thed-galactose configuration are important loci for interaction with these lectins. An important finding is that the JFA binds specifically to Galß1-3GaINAc with much higher affinity than the other disaccharides which are structurally and topographically similar.The results of stopped-flow spectrometry on the binding ofN-dansylgalactosamine to these lectins are consistent with a bimolecular single step mechanism. The association rate constants (2.4×105, 1.3×104, and 11.7×105 M–1 sec–1 for SBA, WBA I and JFA, respectively) obtained are several orders of magnitude slower than the ones expected for diffusion controlled reactions. The dissociation rate constants (0.2, 3.2×10–2, 83.3 sec–1 for SBA, WBA I and JFA, respectively) obtained for the dissociation ofN-dansylgalactosamine from its lectin complex are slowest for SBA and WBA I when compared with any other lectin-ligand dissociation process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two-dimensional (2D) kinetics of receptor-ligand interactions governs cell adhesion in many biological processes. While the dissociation kinetics of receptor-ligand bond is extensively investigated, the association kinetics has much less been quantified. Recently receptor-ligand interactions between two surfaces were investigated using a thermal fluctuation assay upon biomembrane force probe technique (Chen et al. in Biophys J 94:694-701, 2008). The regulating factors on association kinetics, however, are not well characterized. Here we developed an alternative thermal fluctuation assay using optical trap technique, which enables to visualize consecutive binding-unbinding transition and to quantify the impact of microbead diffusion on receptor-ligand binding. Three selectin constructs (sLs, sPs, and PLE) and their ligand P-selectin glycoprotein ligand 1 were used to conduct the measurements. It was indicated that bond formation was reduced by enhancing the diffusivity of selectin-coupled carrier, suggesting that carrier diffusion is crucial to determine receptor-ligand binding. It was also found that 2D forward rate predicted upon first-order kinetics was in the order of sPs > sLs > PLE and bond formation was history-dependent. These results further the understandings in regulating association kinetics of surface-bound receptor-ligand interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. The effect of 2,2’-bis-[α-(trimethylammonium)methyl]azobenzene (2BQ), a photoisomerizable competitive antagonist, was studied at the nicotinic acetycholine receptor of Electrophorus electroplaques using voltage-jump and light-flash techniques.

2. 2BQ, at concentrations below 3 μΜ, reduced the amplitude of voltage-jump relaxations but had little effect on the voltage-jump relaxation time constants under all experimental conditions. At higher concentrations and voltages more negative than -150 mV, 2BQ caused significant open channel blockade.

3. Dose-ratio studies showed that the cis and trans isomers of 2BQ have equilibrium binding constants (K) of .33 and 1.0 μΜ, respectively. The binding constants determined for both isomers are independent of temperature, voltage, agonist concentration, and the nature of the agonist.

4. In a solution of predominantly cis-2BQ, visible-light flashes led to a net cis→trans isomerization and caused an increase in the agonist-induced current. This increase had at least two exponential components; the larger amplitude component had the same time constant as a subsequent voltage-jump relaxation; the smaller amplitude component was investigated using ultraviolet light flashes.

5. In a solution of predominantly trans-2BQ, UV-light flashes led to a net trans→cis isomerization and caused a net decrease in the agonist-induced current. This effect had at least two exponential components. The smaller and faster component was an increase in agonist-induced current and had a similar time constant to the voltage-jump relaxation. The larger component was a slow decrease in the agonist-induced current with rate constant approximately an order of magnitude less than that of the voltage-jump relaxation. This slow component provided a measure of the rate constant for dissociation of cis-2BQ (k_ = 60/s at 20°C). Simple modelling of the slope of the dose-rate curves yields an association rate constant of 1.6 x 108/M/s. This agrees with the association rate constant of 1.8 x 108/M/s estimated from the binding constant (Ki). The Q10 of the dissociation rate constant of cis-2BQ was 3.3 between 6° and 20°C. The rate constants for association and dissociation of cis-28Q at receptors are independent of voltage, agonist concentration, and the nature of the agonist.

6. We have measured the molecular rate constants of a competitive antagonist which has roughly the same K as d-tubocurarine but interacts more slowly with the receptor. This leads to the conclusion that curare itself has an association rate constant of 4 x 109/M/s or roughly as fast as possible for an encounter-limited reaction.