991 resultados para Assembly line supply
Resumo:
The objective of this research is to identify the benefits of ergonomic improvements in workstations and in planned parts supply in an automotive assembly line. Another aim is to verify to what extent it is possible to create competitive advantages in the manufacturing area with reduction in vehicle assembly time by using technological investments in ergonomics with benefits to the worker and to the company. The Methods Time Measurement (MTM) methodology is chosen to measure the process time differences. To ensure a reliable comparison, a company in Brazil that has two different types of assembly line installations in the same plant was observed, and both assembly lines were under the same influences in terms of human resources, wages, food, and educational level of the staff. In this article, the first assembly line is called ""new"" and was built 6 years ago, with high investments in ergonomic solutions, in the supply system, and in the process. The other is called ""traditional"" and was built 23 years ago with few investments in the area. (C) 2010 Wiley Periodicals, Inc.
Resumo:
Supply Chain Simulation (SCS) is applied to acquire information to support outsourcing decisions but obtaining enough detail in key parameters can often be a barrier to making well informed decisions.
One aspect of SCS that has been relatively unexplored is the impact of inaccurate data around delays within the SC. The impact of the magnitude and variability of process cycle time on typical performance indicators in a SC context is studied.
System cycle time, WIP levels and throughput are more sensitive to the magnitude of deterministic deviations in process cycle time than variable deviations. Manufacturing costs are not very sensitive to these deviations.
Future opportunities include investigating the impact of process failure or product defects, including logistics and transportation between SC members and using alternative costing methodologies.
Sensitivity to noise and ergodicity of an assembly line of cellular automata that classifies density
Resumo:
We investigate the sensitivity of the composite cellular automaton of H. Fuks [Phys. Rev. E 55, R2081 (1997)] to noise and assess the density classification performance of the resulting probabilistic cellular automaton (PCA) numerically. We conclude that the composite PCA performs the density classification task reliably only up to very small levels of noise. In particular, it cannot outperform the noisy Gacs-Kurdyumov-Levin automaton, an imperfect classifier, for any level of noise. While the original composite CA is nonergodic, analyses of relaxation times indicate that its noisy version is an ergodic automaton, with the relaxation times decaying algebraically over an extended range of parameters with an exponent very close (possibly equal) to the mean-field value.
Resumo:
The General Assembly Line Balancing Problem with Setups (GALBPS) was recently defined in the literature. It adds sequence-dependent setup time considerations to the classical Simple Assembly Line Balancing Problem (SALBP) as follows: whenever a task is assigned next to another at the same workstation, a setup time must be added to compute the global workstation time, thereby providing the task sequence inside each workstation. This paper proposes over 50 priority-rule-based heuristic procedures to solve GALBPS, many of which are an improvement upon heuristic procedures published to date.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We propose simple heuristics for the assembly line worker assignment and balancing problem. This problem typically occurs in assembly lines in sheltered work centers for the disabled. Different from the well-known simple assembly line balancing problem, the task execution times vary according to the assigned worker. We develop a constructive heuristic framework based on task and worker priority rules defining the order in which the tasks and workers should be assigned to the workstations. We present a number of such rules and compare their performance across three possible uses: as a stand-alone method, as an initial solution generator for meta-heuristics, and as a decoder for a hybrid genetic algorithm. Our results show that the heuristics are fast, they obtain good results as a stand-alone method and are efficient when used as a initial solution generator or as a solution decoder within more elaborate approaches.
Resumo:
The survival of motor neurons (SMN) complex mediates the assembly of small nuclear ribonucleoproteins (snRNPs) involved in splicing and histone RNA processing. A crucial step in this process is the binding of Sm proteins onto the SMN protein. For Sm B/B', D1, and D3, efficient binding to SMN depends on symmetrical dimethyl arginine (sDMA) modifications of their RG-rich tails. This methylation is achieved by another entity, the PRMT5 complex. Its pICln subunit binds Sm proteins whereas the PRMT5 subunit catalyzes the methylation reaction. Here, we provide evidence that Lsm10 and Lsm11, which replace the Sm proteins D1 and D2 in the histone RNA processing U7 snRNPs, associate with pICln in vitro and in vivo without receiving sDMA modifications. This implies that the PRMT5 complex is involved in an early stage of U7 snRNP assembly and hence may have a second snRNP assembly function unrelated to sDMA modification. We also show that the binding of Lsm10 and Lsm11 to SMN is independent of any methylation activity. Furthermore, we present evidence for two separate binding sites in SMN for Sm/Lsm proteins. One recognizes Sm domains and the second one, the sDMA-modified RG-tails, which are present only in a subset of these proteins.
Resumo:
This paper presents an ant colony optimization algorithm to sequence the mixed assembly lines considering the inventory and the replenishment of components. This is a NP-problem that cannot be solved to optimality by exact methods when the size of the problem growth. Groups of specialized ants are implemented to solve the different parts of the problem. This is intended to differentiate each part of the problem. Different types of pheromone structures are created to identify good car sequences, and good routes for the replenishment of components vehicle. The contribution of this paper is the collaborative approach of the ACO for the mixed assembly line and the replenishment of components and the jointly solution of the problem.
Resumo:
The inbound logistic for feeding the workstation inside the factory represents a critical issue in the car manufacturing industry. Nowadays, this issue is even more critical than in the past since more types of car are being produced in the assembly lines. Consequently, as workstations have to install many types of components, they also need to have an inventory of different types of the component in a compact space. The replenishment is a critical issue since a lack of inventory could cause line stoppage or reworking. On the other hand, an excess of inventory could increase the holding cost or even block the replenishment paths. The decision of the replenishment routes cannot be made without taking into consideration the inventory needed by each station during the production time which will depend on the production sequence. This problem deals with medium-sized instances and it is solved using online solvers. The contribution of this paper is a MILP for the replenishment and inventory of the components in a car assembly line.
Resumo:
Purpose – A binary integer programming model for the simple assembly line balancing problem (SALBP), which is well known as SALBP-1, was formulated more than 30 years ago. Since then, a number of researchers have extended the model for the variants of assembly line balancing problem.The model is still prevalent nowadays mainly because of the lower and upper bounds on task assignment. These properties avoid significant increase of decision variables. The purpose of this paper is to use an example to show that the model may lead to a confusing solution. Design/methodology/approach – The paper provides a remedial constraint set for the model to rectify the disordered sequence problem. Findings – The paper presents proof that the assembly line balancing model formulated by Patterson and Albracht may lead to a confusing solution. Originality/value – No one previously has found that the commonly used model is incorrect.
Resumo:
Purpose – This paper sets out to study a production-planning problem for printed circuit board (PCB) assembly. A PCB assembly company may have a number of assembly lines for production of several product types in large volume. Design/methodology/approach – Pure integer linear programming models are formulated for assigning the product types to assembly lines, which is the line assignment problem, with the objective of minimizing the total production cost. In this approach, unrealistic assignment, which was suffered by previous researchers, is avoided by incorporating several constraints into the model. In this paper, a genetic algorithm is developed to solve the line assignment problem. Findings – The procedure of the genetic algorithm to the problem and a numerical example for illustrating the models are provided. It is also proved that the algorithm is effective and efficient in dealing with the problem. Originality/value – This paper studies the line assignment problem arising in a PCB manufacturing company in which the production volume is high.
Resumo:
Two assembly line balancing problems are addressed. The first problem (called SALBP-1) is to minimize number of linearly ordered stations for processing n partially ordered operations V = {1, 2, ..., n} within the fixed cycle time c. The second problem (called SALBP-2) is to minimize cycle time for processing partially ordered operations V on the fixed set of m linearly ordered stations. The processing time ti of each operation i ∈V is known before solving problems SALBP-1 and SALBP-2. However, during the life cycle of the assembly line the values ti are definitely fixed only for the subset of automated operations V\V . Another subset V ⊆ V includes manual operations, for which it is impossible to fix exact processing times during the whole life cycle of the assembly line. If j ∈V , then operation times tj can differ for different cycles of the production process. For the optimal line balance b of the assembly line with operation times t1, t2, ..., tn, we investigate stability of its optimality with respect to possible variations of the processing times tj of the manual operations j ∈ V .
Resumo:
Pós-graduação em Engenharia de Produção - FEG