991 resultados para Assembly instructions, Aerospace, Animation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies on work instruction delivery for complex assembly tasks have shown that the mode and delivery method for the instructions in an engineering context can influence both build time and product quality. The benefits of digital, animated instructional formats when compared to static pictures and text only formats have already been demonstrated. Although pictograms have found applications for relatively straight forward operations and activities, their applicability to relatively complex assembly tasks has yet to be demonstrated. This study compares animated instructions and pictograms for the assembly of an aircraft panel. Based around a series of build experiments, the work records build time as well as the number of media references to measure and compare build efficiency. The number of build errors and the time required to correct them is also recorded. The experiments included five participants completing five builds over five consecutive days for each media type. Results showed that on average the total build time was 13.1% lower for the group using animated instructions. The benefit of animated instructions on build time was most prominent in the first three builds, by build four this benefit had disappeared. There were a similar number of instructional references for the two groups over the five builds but the pictogram users required a lot more references during build 1. There were more errors among the group using pictograms requiring more time for corrections during the build.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of augmented reality (AR) technology for assembly guidance is a novel approach in the traditional manufacturing domain. In this paper, we propose an AR approach for assembly guidance using a virtual interactive tool that is intuitive and easy to use. The virtual interactive tool, termed the Virtual Interaction Panel (VirIP), involves two tasks: the design of the VirIPs and the real-time tracking of an interaction pen using a Restricted Coulomb Energy (RCE) neural network. The VirIP includes virtual buttons, which have meaningful assembly information that can be activated by an interaction pen during the assembly process. A visual assembly tree structure (VATS) is used for information management and assembly instructions retrieval in this AR environment. VATS is a hierarchical tree structure that can be easily maintained via a visual interface. This paper describes a typical scenario for assembly guidance using VirIP and VATS. The main characteristic of the proposed AR system is the intuitive way in which an assembly operator can easily step through a pre-defined assembly plan/sequence without the need of any sensor schemes or markers attached on the assembly components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is about the derivation of the addition law on an arbitrary elliptic curve and efficiently adding points on this elliptic curve using the derived addition law. The outcomes of this research guarantee practical speedups in higher level operations which depend on point additions. In particular, the contributions immediately find applications in cryptology. Mastered by the 19th century mathematicians, the study of the theory of elliptic curves has been active for decades. Elliptic curves over finite fields made their way into public key cryptography in late 1980’s with independent proposals by Miller [Mil86] and Koblitz [Kob87]. Elliptic Curve Cryptography (ECC), following Miller’s and Koblitz’s proposals, employs the group of rational points on an elliptic curve in building discrete logarithm based public key cryptosystems. Starting from late 1990’s, the emergence of the ECC market has boosted the research in computational aspects of elliptic curves. This thesis falls into this same area of research where the main aim is to speed up the additions of rational points on an arbitrary elliptic curve (over a field of large characteristic). The outcomes of this work can be used to speed up applications which are based on elliptic curves, including cryptographic applications in ECC. The aforementioned goals of this thesis are achieved in five main steps. As the first step, this thesis brings together several algebraic tools in order to derive the unique group law of an elliptic curve. This step also includes an investigation of recent computer algebra packages relating to their capabilities. Although the group law is unique, its evaluation can be performed using abundant (in fact infinitely many) formulae. As the second step, this thesis progresses the finding of the best formulae for efficient addition of points. In the third step, the group law is stated explicitly by handling all possible summands. The fourth step presents the algorithms to be used for efficient point additions. In the fifth and final step, optimized software implementations of the proposed algorithms are presented in order to show that theoretical speedups of step four can be practically obtained. In each of the five steps, this thesis focuses on five forms of elliptic curves over finite fields of large characteristic. A list of these forms and their defining equations are given as follows: (a) Short Weierstrass form, y2 = x3 + ax + b, (b) Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1, (c) Twisted Hessian form, ax3 + y3 + 1 = dxy, (d) Twisted Edwards form, ax2 + y2 = 1 + dx2y2, (e) Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1, These forms are the most promising candidates for efficient computations and thus considered in this work. Nevertheless, the methods employed in this thesis are capable of handling arbitrary elliptic curves. From a high level point of view, the following outcomes are achieved in this thesis. - Related literature results are brought together and further revisited. For most of the cases several missed formulae, algorithms, and efficient point representations are discovered. - Analogies are made among all studied forms. For instance, it is shown that two sets of affine addition formulae are sufficient to cover all possible affine inputs as long as the output is also an affine point in any of these forms. In the literature, many special cases, especially interactions with points at infinity were omitted from discussion. This thesis handles all of the possibilities. - Several new point doubling/addition formulae and algorithms are introduced, which are more efficient than the existing alternatives in the literature. Most notably, the speed of extended Jacobi quartic, twisted Edwards, and Jacobi intersection forms are improved. New unified addition formulae are proposed for short Weierstrass form. New coordinate systems are studied for the first time. - An optimized implementation is developed using a combination of generic x86-64 assembly instructions and the plain C language. The practical advantages of the proposed algorithms are supported by computer experiments. - All formulae, presented in the body of this thesis, are checked for correctness using computer algebra scripts together with details on register allocations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assembly of aerospace and automotive structures in recent years is increasingly carried out using adhesives. Adhesive joints have advantages of uniform stress distribution and less stress concentration in the bonded region. Nevertheless, they may suffer due to the presence of defects in bond line and at the interface or due to improper curing process. While defects like voids, cracks and delaminations present in the adhesive bond line may be detected using different NDE methods, interfacial defects in the form of kissing bond may go undetected. Attempts using advanced ultrasonic methods like nonlinear ultrasound and guided wave inspection to detect kissing bond have met with limited success stressing the need for alternate methods. This paper concerns the preliminary studies carried out on detectability of dry contact kissing bonds in adhesive joints using the Digital Image Correlation (DIC) technique. In this attempt, adhesive joint samples containing varied area of kissing bond were prepared using the glass fiber reinforced composite (GFRP) as substrates and epoxy resin as the adhesive layer joining them. The samples were also subjected to conventional and high power ultrasonic inspection. Further, these samples were loaded till failure to determine the bond strength during which digital images were recorded and analyzed using the DIC method. This noncontact method could indicate the existence of kissing bonds at less than 50% failure load. Finite element studies carried out showed a similar trend. Results obtained from these preliminary studies are encouraging and further tests need to be done on a larger set of samples to study experimental uncertainties and scatter associated with the method. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adhesives are widely used to execute the assembly of aerospace and automotive structures due to their ability to join dissimilar materials, reduced stress concentration, and improved fatigue resistance. The mechanical behavior of adhesive joints can be studied either using analytical models or by conducting mechanical tests. However, the complexity owing to multiple interfaces, layers with different properties, material and geometric nonlinearity and its three-dimensional nature combine to increase the difficulty in obtaining an overall system of governing equations to predict the joint behavior. On the other hand, experiments are often time consuming and expensive due to a number of parameters involved. Finite element analysis (FEA) is profoundly used in recent years to overcome these limitations. The work presented in this paper involves the finite element modeling and analysis of a composite single lap joint where the adhesive-adherend interface region was modeled using connector elements. The computed stresses were compared with the experimental stresses obtained using digital image correlation technique. The results showed an agreement. Further, the failure load predicted using FEA was found to be closer to the actual failure load obtained by mechanical tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Full text: With the rapid development of the aerospace industry, manufacturing technologies have to continuously develop and adjust themselves to ever-growing demands coming from more complex component designs and the use of highly engineered materials. Today there is an increased number of manufacturers contributing to the realization of final products, i.e. avionics, so it is easy to perceive the truly globalized dimension of the aerospace manufacturing business. With this comes the demand for further engineering developments on which the academic/industrial research institutes need to deliver solutions to real aerospace manufacturing problems. This is a challenging task since aerospace manufacturing technologies have to cover a wide range of materials (from composites to advanced Ni/Ti alloys), processes (from forging to non-traditional machining and assembly), and parts’ dimensions/batch sizes (from airframes to turbine blades). In this wide context, this Special Issue includes high quality theoretical and experimental scientific contributions on the following topics related to the aerospace manufacturing technology: (a) machining of advance aerospace alloys; (b) abrasive processes applied to aerospace components; (c) surface treatments to enhance fatigue performance of aerospace components; (d) joining and assembly of aerospace components; (e) laser machining of aerospace alloys; (f) automated/supervised manufacture of aerospace components; (g) quality supervision of aerospace manufacturing routes. The breadth of topics in this Special Issue is perhaps indicative of the complexity and challenges that the research related to aerospace manufacturing technology can offer. We hope that this issue will act as a catalyst for the development of further research, academic and industrial interactions, and publications related to aerospace manufacturing technologies for the benefit of the academic and industrial research communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recent studies exploring the effects of instructional animations on learning compared to static graphics have yielded mixed results. Few studies have explored their effectiveness in portraying procedural-motor information. Opportunities exist within an applied (manufacturing) context for instructional animations to be used to facilitate build performance on an assembly line. The present study compares build time performance across successive builds when using animation, static diagrams or text instructions to convey an assembly sequence for a handheld device. Although an immediate facilitating effect of animation was found, yielding a significantly faster build time for Build 1, this advantage had disappeared by Build 3. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This study examines whether virtual reality (VR) is more superior to paper-based instructions in increasing the speed at which individuals learn a new assembly task. Specifically, the work seeks to quantify any learning benefits when individuals have been given the opportunity and compares the performance of two groups using virtual and hardcopy media types to pre-learn the task. A build experiment based on multiple builds of an aircraft panel showed that a group of people who pre-learned the assembly task using a VR environment completed their builds faster (average build time 29.5% lower). The VR group also made fewer references to instructional materials (average number of references 38% lower) and made fewer errors than a group using more traditional, hard copy instructions. These outcomes were more pronounced during build one with differences in build time and number of references showing limited statistical differences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The primary goal of this work is to quantify any bene?ts that the use of digital manufacturing methods can offer when used upstream from production, for manufacturing process design, and tool development. Learning at this stage of product development is referred to as management learning. Animated build simulations have been used to develop build procedures and tooling for a panel assembly for the new Bombardier CRJ1000 (Canadair Regional Jet, 100 seat). When the jig format was developed, its simulated performance was compared to that of current CRJ700/900 panel builds to identify and quantify any improvements in terms of tooling cost and panel build time. When comparing like-for-like functions between existing CRJ700/900 (Canadair Regional Jet, 70/90 seat) and the
CRJ1000 tooling, it was predicted that the digitally assisted improvements had brought about a 4.9% reduction in jig cost. An evaluation of the build process for the CRJ1000 uplock panel predicted a 5.2% reduction in the assembly time. In addition to the improvement of existing tooling functions, new jig functionality was added so that both the drilling and riveting functions could be carried out in a single jig for the new RJ1000 panel.