145 resultados para Aspen HYSYS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El gas natural ha tomado un rol estratégico importante en el suministro de energía a nivel mundial como consecuencia de la creciente demanda global de energía. El agua es probablemente el componente indeseable más común en el gas natural no tratado ya que su presencia puede ocasionar la formación de hidratos y problemas de corrosión. Debido a las potenciales consecuencias costosas, el gas debe ser sometido a procesos de acondicionamiento a fin de alcanzar las especificaciones requeridas para su venta, transporte hacia los centros de distribución y consumo final. En los últimos años, la simulación de procesos está jugando un papel muy importante en la industria del gas y petróleo como una herramienta adecuada y oportuna para el diseño, caracterización, optimización y monitoreo del funcionamiento de procesos industriales. En el presente trabajo se describe el desarrollo de dos simulaciones estacionarias del proceso de deshidratación de gas natural por absorción con trietilenglicol (TEG), empleando los simuladores comerciales de procesos Aspen HYSYS V8.3 y Aspen PLUS V8.2. La composición del gas natural, la configuración del proceso y las condiciones de operación empleadas en los cálculos y la simulación son típicas de los yacimientos y plantas de acondicionamiento de la provincia de Salta (Argentina).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabajo tiene como objetivo el diseño y dimensionamiento del gasoducto de alimentación a la planta de producción de GNL del proyecto Gorgon LNG, el cual consiste en la explotación de varios yacimientos de gas natural offshore al oeste de Australia y la producción de GNL en la planta situada en la Isla Barrow. Se han considerado dos fases de desarrollo, una inicial con ocho pozos, y otra de madurez con doce. El dimensionamiento se ha realizado mediante simulaciones con el programa Aspen Hysys, mediante el cual se han obtenido los diámetros internos mínimos y los perfiles de presiones y temperaturas, así como el caudal de MEG requerido para evitar la formación de hidratos. Posteriormente, mediante cálculo matemático se ha calculado el espesor teniendo en cuenta las tensiones mecánicas a las que estará sometida la tubería. Finalmente, a partir de los resultados del cálculo técnico se ha realizado el estudio económico, estimando costes e ingresos, en el cual se ha realizado un estudio de la rentabilidad del proyecto y un análisis de sensibilidad, resultando un proyecto técnica y económicamente viable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a derivative-free optimization algorithm coupled with a chemical process simulator for the optimal design of individual and complex distillation processes using a rigorous tray-by-tray model. The proposed approach serves as an alternative tool to the various models based on nonlinear programming (NLP) or mixed-integer nonlinear programming (MINLP) . This is accomplished by combining the advantages of using a commercial process simulator (Aspen Hysys), including especially suited numerical methods developed for the convergence of distillation columns, with the benefits of the particle swarm optimization (PSO) metaheuristic algorithm, which does not require gradient information and has the ability to escape from local optima. Our method inherits the superstructure developed in Yeomans, H.; Grossmann, I. E.Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models. Ind. Eng. Chem. Res.2000, 39 (11), 4326–4335, in which the nonexisting trays are considered as simple bypasses of liquid and vapor flows. The implemented tool provides the optimal configuration of distillation column systems, which includes continuous and discrete variables, through the minimization of the total annual cost (TAC). The robustness and flexibility of the method is proven through the successful design and synthesis of three distillation systems of increasing complexity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The heavy part of the oil can be used for numerous purposes, e.g. to obtain lubricating oils. In this context, many researchers have been studying alternatives such separation of crude oil components, among which may be mentioned molecular distillation. Molecular distillation is a forced evaporation technique different from other conventional processes in the literature. This process can be classified as a special distillation case under high vacuum with pressures that reach extremely low ranges of the order of 0.1 Pascal. The evaporation and condensation surfaces must have a distance from each other of the magnitude order of mean free path of the evaporated molecules, that is, molecules evaporated easily reach the condenser, because they find a route without obstacles, what is desirable. Thus, the main contribution of this work is the simulation of the falling-film molecular distillation for crude oil mixtures. The crude oil was characterized using UniSim® Design and R430 Aspen HYSYS® V8.5. The results of this characterization were performed in spreadsheets of Microsoft® Excel®, calculations of the physicochemical properties of the waste of an oil sample, i.e., thermodynamic and transport. Based on this estimated properties and boundary conditions suggested by the literature, equations of temperature and concentration profiles were resolved through the implicit finite difference method using the programming language Visual Basic® (VBA) for Excel®. The result of the temperature profile showed consistent with the reproduced by literature, having in their initial values a slight distortion as a result of the nature of the studied oil is lighter than the literature, since the results of the concentration profiles were effective allowing realize that the concentration of the more volatile decreases and of the less volatile increases due to the length of the evaporator. According to the transport phenomena present in the process, the velocity profile tends to increase to a peak and then decreases, and the film thickness decreases, both as a function of the evaporator length. It is concluded that the simulation code in Visual Basic® language (VBA) is a final product of the work that allows application to molecular distillation of petroleum and other similar mixtures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Produced water constitutes the largest volume of waste from offshore oil and gas operations and is composed of a wide range of organic and inorganic compounds. Although treatment processes have to meet strict oil in water regulations, the definition of “oil” is a function of the analysis process and may include aliphatic hydrocarbons which have limited environmental impact due to degradability whilst ignoring problematic dissolved petroleum species. This thesis presents the partitioning behavior of oil in produced water as a function of temperature and salinity to identify compounds of environmental concern. Phenol, p-cresol, and 4-tert-butylphenol were studied because of their xenoestrogenic power; other compounds studied are polycyclic aromatic hydrocarbon PAHs which include naphthalene, fluorene, phenanthrene, and pyrene. Partitioning experiments were carried out in an Innova incubator for 48 hours, temperature was varied from 4゚C to 70゚C, and two salinity levels of 46.8‰ and 66.8‰ were studied. Results obtained showed that the dispersed oil concentration in the water reduces with settling time and equilibrium was attained at 48 h settling time. Polycyclic aromatic hydrocarbons (PAHs) partitions based on dispersed oil concentration whereas phenols are not significantly affected by dispersed oil concentration. Higher temperature favors partitioning of PAHs into the water phase. Salinity has negligible effect on partitioning pattern of phenols and PAHs studied. Simulation results obtained from the Aspen HYSYS model shows that temperature and oil droplet distribution greatly influences the efficiency of produced water treatment system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los hidrocarburos pesados son el mayor recurso del petróleo en el mundo, sin embargo en el pasado se habían dejado de lado como recurso energético debido a las dificultades y costos asociados de su producción [1]. La industria financia estas investigaciones por la importancia del tema en producción y caracterización. Al trabajar con una torre de vacio los datos necesarios para los cálculos son las temperaturas ASTM (10mmHg) y la densidad del crudo con la cual se obtiene la curva TBP760 (True Boiling Point), también se necesita las especificaciones de los productos y los rendimientos respecto de la alimentación. Para poder correlacionar los distintos puntos de ebullición con los porcentajes de vaporizado para cada cambio de presión de los distintos productos, se construye un diagrama de fases con las temperaturas EFV760 (Equilibrium Flash Vaporization) y EFV10. El simulador a través de cálculos internos resuelve automáticamente el diagrama de fases, en comparación con la dificultad que representan los cálculos manuales del mismo, tal como son explicitados precedentemente. En este trabajo se desarrolla la simulación de una torre de vacío mediante el simulador Aspen HYSYS V8.3, empleando como alimentación un crudo pesado. Lo antes expuesto constituye una importante ventaja el uso del simulador frente al cálculo convencional, considerando los tiempos de resolución de los diseños de procesos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary aim of the present study was to find an efficient and simple method of vegetative propagation for producing large numbers of hybrid aspen (Populus tremuloides L. x P. tremula Michx.) plants for forest plantations. The key objectives were to investigate the main physiological factors that affect the ability of cuttings to regenerate and to determine whether these factors could be manipulated by different growth conditions. In addition, clonal variation in traits related to propagation success was examined. According to our results, with the stem cutting method, depending on the clone, it is possible to obtain only 1−8 plants from one stock plant per year. With the root cutting method the corresponding values for two-year-old stock plants are 81−207 plants. The difference in number of cuttings between one- and two-year-old stock plants is so pronounced that it is economically feasible to grow stock plants for two years. There is no reason to use much older stock plants as a source of cuttings, as it has been observed that rooting ability diminishes as root diameter increases. Clonal variation is the most important individual factor in propagation of hybrid aspen. The fact that the efficiently sprouted clones also rooted best facilitates the selection of clones for large-scale propagation. In practice, root cuttings taken from all parts of the root system of hybrid aspen were capable of producing new shoots and roots. However, for efficient rooting it is important to use roots smaller than one centimeter in diameter. Both rooting and sprouting, as well as sprouting rate, were increased by high soil temperature; in our studies the highest temperature tested (30ºC) was the best. Light accelerated the sprouting of root cuttings, but they rooted best in dark conditions. Rooting is essential because without roots the sprouted cutting cannot survive long. For aspen the criteria for clone selection are primarily fiber qualities and growth rate, but ability to regenerate efficiently is also essential. For large-scale propagation it is very important to find clones from which many cuttings per stock plant can be obtained. In light of production costs, however, it is even more important that the regeneration ability of the produced cuttings be high.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European aspen (Populus tremula) is a keystone species for biodiversity in boreal forests. However, the future of aspen may be threatened, because large aspens have mostly been removed from managed forests, whereas regeneration and the long-term persistence of mature trees are subjects of concern in protected areas. Aspen is a pioneer tree, and it can reproduce both sexually by seed and asexually by root suckers. Through asexual reproduction aspen forms clones, groups of genetically identical trees (ramets). In my thesis, I have studied the structure of aspen populations in terms of number, size, clonal and demographic properties. Additionally, I have investigated the emergence and survival of seedlings as well as the seed quantity and quality in crosses between the European and hybrid aspen. To study the regeneration and population structure, mature aspens were recorded in old-growth and managed forests in eastern Finland based on a large-scale inventory (11 400 ha). In addition, small aspen trees were surveyed on sample plots. Clonal structure was investigated both by morphological characters and by DNA-based markers (microsatellites). Seedling emergence and survival was studied with two sowing experiments. With crosses between European and hybrid aspens we wanted to study whether elevated temperatures due to climate change would benefit the different crosses of European and hybrid aspen unequally and thus affect the gene flow between the two species. The average volumes of mature aspen were 5.3 m3/ha in continuous old-growth, and 0.8 m3/ha in managed forests. Results indicate also that large aspen trees in managed forests are a legacy of the past less intensively managed forest landscapes. Long-term persistence of aspen in protected areas can only be secured by restoration measures creating sufficiently large gaps for regeneration. More emphasis should be given to sparing aspens in thinnings and to retaining of mature aspens in regeneration cutting in managed forests. Aspen was found to be spatially aggregated in the landscape. This could be explained by site type, disturbance history and / or limitations in seed dispersal. Clonal structure does not explain the spatial aggregation, since average size of the clones was only 2.3 ramets, and most clones (70 %) consisted of just one ramet. The small size of the clones suggests that most of them are relatively young. Therefore, sexual reproduction may be more common than has previously been thought. Seedling emergence was most successful in mineral soil especially, when the site had been burned. Only few seedlings occurred on humus. Survival of the seedlings was low, and strongly dependent on moisture, but also on seedbed conditions. The seeds were found to maintain their germinability longer than has earlier been thought to be possible. Interspecific crosses produced more seeds with higher quality than intraspecific crosses. When temperature was elevated, germination of hybrid aspen seeds increased more than seeds from P. tremula x P. tremula crosses. These results suggest that hybrid aspen may have a significant genetic impact on the European aspen, and this effect may become strengthened by climate warming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the responses of species and ecosystems to human-induced global environmental change has become a high research priority. The main aim of this thesis was to investigate how certain environmental factors that relate to global change affect European aspen (Populus tremula), a keystone species in boreal forests, and hybrid aspen (P. tremula × P. tremuloides), cultivated in commercial plantations. The main points under consideration were the acclimatization potential of aspen through changes in leaf morphology, as well as effects on growth, leaf litter chemistry and decomposition. The thesis is based on two experiments, in which young aspen (< 1 year) were exposed either to an atmospheric pollutant [elevated ozone (O3)] or variable resource availability [water, nitrogen (N)]; and two field studies, in which mature trees (> 8 years) were growing in environments exposed to multiple environmental stress factors (roadside and urban environments). The field studies included litter decomposition experiments. The results show that young aspen, especially the native European aspen, was sensitive to O3 in terms of visible leaf injuries. Elevated O3 resulted in reduced biomass allocation to roots and accelerated leaf senescence, suggesting negative effects on growth in the long term. Water and N availability modified the frost hardening of young aspen: High N supply, especially when combined with drought, postponed the development of frost hardiness, which in turn may predispose trees to early autumn frosts. This effect was more pronounced in European aspen. The field studies showed that mature aspen acclimatized to roadside and urban environments by producing more xeromorphic leaves. Leaf morphology was also observed to vary in response to interannual climatic variation, which further indicates the ability of aspen for phenotypic plasticity. Intraspecific variation was found in several of the traits measured, although intraspecific differences in response to the abiotic factors examined were generally small throughout the studies. However, some differences between clones were found in sensitivity to O3 and the roadside environment. Aspen leaf litter decomposition was retarded in the roadside environment, but only initially. By contrast, decomposition was found to be faster in the urban than the rural environment throughout the study. The higher quality of urban litter (higher in N, lower in lignin and phenolics), as well as higher temperature, N deposition and humus pH at the urban site were factors likely to promote decay. The phenotypic plasticity combined with intraspecific variation found in the studies imply that aspen has potential for withstanding environmental changes, although some global change factors, such as rising O3 levels, may adversely affect its performance. The results also suggest that the multiple environmental changes taking place in urban areas which correspond closely with the main drivers of global change can modify ecosystem functioning by promoting litter decomposition, mediated partly by alterations in leaf litter quality.