784 resultados para Ascites microenvironment
Resumo:
High tumor kallikrein-related-peptidase 4 (KLK4) levels are associated with a poor outcome for women with serous epithelial ovarian cancer (EOC), for which peritoneal dissemination and chemoresistance are key events. To determine the role of KLK4 in these events, we examined KLK4-transfected SKOV-3 and endogenous KLK4 expressing OVCA432 cells in 3-dimensional (3D) suspension culture to mimic the ascites microenvironment. KLK4-SKOV-3 cells formed multicellular aggregates (MCAs) as seen in ascites, as did SKOV-3 cells treated with active KLK4. MCA formation was reduced by treatment with a KLK4 blocking antibody or the selective active site KLK4 sunflower trypsin inhibitor (SFTI-FCQR). KLK4-MCAs formed larger cancer cell foci in mesothelial cell monolayers than those formed by vector and native SKOV-3 cells, suggesting KLK4-MCAs are highly invasive in the peritoneal microenvironment. A high level of KLK4 is expressed by ascitic EOC cells compared to matched primary tumor cells, further supporting its role in the ascitic microenvironment. Interestingly, KLK4 transfected SKOV-3 cells expressed high levels of the KLK4 substrate, urokinase plasminogen activator (uPA), particularly in 3D-suspension, and high levels of both KLK4 and uPA were observed in patient cells taken from ascites. Importantly, the KLK4-MCAs were paclitaxel resistant which was reversed by SFTI-FCQR and to a lesser degree by the general serine protease inhibitor, Aprotinin, suggesting that in addition to uPA, other as yet unidentified substrates of KLK4 must be involved. Nonetheless, these data suggest that KLK4 inhibition, in conjunction with paclitaxel, may improve the outcome for women with serous epithelial ovarian cancer and high KLK4 levels in their tumors.
Resumo:
Tumor cells in ascites are a major source of disease recurrence in ovarian cancer patients. In an attempt to identify and profile the population of ascites cells obtained from ovarian cancer patients, a novel method was developed to separate adherent (AD) and non-adherent (NAD) cells in culture. Twenty-five patients were recruited to this study; 11 chemonaive (CN) and 14 chemoresistant (CR). AD cells from both CN and CR patients exhibited mesenchymal morphology with an antigen profile of mesenchymal stem cells and fibroblasts. Conversely, NAD cells had an epithelial morphology with enhanced expression of cancer antigen 125 (CA125), epithelial cell adhesion molecule (EpCAM) and cytokeratin 7. NAD cells developed infiltrating tumors and ascites within 12-14 weeks after intraperitoneal (i.p.) injections into nude mice, whereas AD cells remained non-tumorigenic for up to 20 weeks. Subsequent comparison of selective epithelial, mesenchymal and cancer stem cell (CSC) markers between AD and NAD populations of CN and CR patients demonstrated an enhanced trend in mRNA expression of E-cadherin, EpCAM, STAT3 and Oct4 in the NAD population of CR patients. A similar trend of enhanced mRNA expression of CD44, MMP9 and Oct4 was observed in the AD population of CR patients. Hence, using a novel purification method we demonstrate for the first time a distinct separation of ascites cells into epithelial tumorigenic and mesenchymal non-tumorigenic populations. We also demonstrate that cells from the ascites of CR patients are predominantly epithelial and show a trend towards increased mRNA expression of genes associated with CSCs, compared to cells isolated from the ascites of CN patients. As the tumor cells in the ascites of ovarian cancer patients play a dominant role in disease recurrence, a thorough understanding of the biology of the ascites microenvironment from CR and CN patients is essential for effective therapeutic interventions.
Resumo:
Ovarian cancer, in particular epithelial ovarian cancer (EOC), is commonly diagnosed when the tumor has metastasized into the abdominal cavity with an accumulation of ascites fluid. Combining histopathology and genetic variations, EOC can be sub-grouped into Type-I and Type-II tumors, of which the latter are more aggressive and metastatic. Metastasis and chemoresistance are the key events associated with the tumor microenvironment that lead to a poor patient outcome. Kallikrein-related peptidases (KLKs) are aberrantly expressed in EOC, in particular, in the more metastatic Type-II tumors. KLKs are a family of 15 serine proteases that are expressed in diverse human tissues and involved in various patho-physiological processes. As extracellular enzymes, KLKs function in the hydrolysis of growth factors, proteases, cell membrane bound receptors, adhesion proteins, and cytokines initiating intracellular signaling pathways and their downstream events. High KLK levels are differentially associated with the prognosis of ovarian cancer patients, suggesting that they not only have application as biomarkers but also function in disease progression, and therefore are potential therapeutic targets. Recent studies have demonstrated the function of these proteases in promoting and/or suppressing the invasive behavior of ovarian cancer cells in metastasis in vitro and in vivo. Both conventional cell culture methods and three-dimensional platforms have been applied to mimic the ovarian cancer microenvironment of patients, such as the solid stromal matrix and ascites fluid. Here we summarize published studies to provide an overview of our understanding of the role of KLKs in EOC, and to lay the foundation for future research directions.
Resumo:
High-grade serous ovarian cancer (HGSC) is the most prevalent epithelial ovarian cancer characterized by late detection, metastasis and resistance to chemotherapy. Previous studies on the tumour immune microenvironment in HGSC identified STAT1 and CXCL10 as the most differentially expressed genes between treatment naïve chemotherapy resistant and sensitive tumours. Interferon-induced STAT1 is a transcription factor, which induces many genes including tumour suppressor genes and those involved in recruitment of immune cells to the tumour immune microenvironment (TME), including CXCL10. CXCL10 is a chemokine that recruits tumour infiltrating lymphocytes (TILs) and exhibits angiostatic function. The current study was performed to determine the effects of differential STAT1 and CXCL10 expression on HGSC disease progression and TME. STAT1 expression and intratumoural CD8+ T cells were evaluated as prognostic and predictive biomarkers via immunohistochemistry on 734 HGSC tumours accrued from the Terry Fox Research Institute-Canadian Ovarian Experimental Unified Resource. The combined effect of STAT1 expression and CD8+ TIL density was confirmed as prognostic and predictive companion biomarkers in the second independent biomarker validation study. Significant positive correlation between STAT1 expression and intratumoral CD8+ TIL density was observed. The effects of enforced CXCL10 expression on HGSC tumour growth, vasculature and immune tumour microenvironment were studied in the ID8 mouse ovarian cancer cell engraftment in immunocompetent C57BL/6 mice. Significant decrease in tumour progression in mice injected with ID8 CXCL10 overexpressing cells compared to mice injected with ID8 vector control cells was observed. Multiplexed cytokine analysis of ascites showed differential expression of IL-6, VEGF and CXCL9 between the two groups. Endothelial cell marker staining showed differences in tumour vasculature between the two groups. Immune transcriptomic profiling identified distinct expression profiles in genes associated with cytokines, chemokines, interferons, T cell function and apoptosis between the two groups. These findings provide evidence that STAT1 is an independent biomarker and in combination with CD8+ TIL density could be applied as novel immune-based biomarkers in HGSC. These results provide the basis for future studies aimed at understanding mechanisms underlying differential tumour STAT1 and CXCL10 expression and its role in pre-existing tumour immunologic diversity, thus potentially contributing to biomarker guided immune modulatory therapies.
Resumo:
Prostate cancer metastasis is reliant on the reciprocal interactions between cancer cells and the bone niche/micro-environment. The production of suitable matrices to study metastasis, carcinogenesis and in particular prostate cancer/bone micro-environment interaction has been limited to specific protein matrices or matrix secreted by immortalised cell lines that may have undergone transformation processes altering signaling pathways and modifying gene or receptor expression. We hypothesize that matrices produced by primary human osteoblasts are a suitable means to develop an in vitro model system for bone metastasis research mimicking in vivo conditions. We have used a decellularized matrix secreted from primary human osteoblasts as a model for prostate cancer function in the bone micro-environment. We show that this collagen I rich matrix is of fibrillar appearance, highly mineralized, and contains proteins, such as osteocalcin, osteonectin and osteopontin, and growth factors characteristic of bone extracellular matrix (ECM). LNCaP and PC3 cells grown on this matrix, adhere strongly, proliferate, and express markers consistent with a loss of epithelial phenotype. Moreover, growth of these cells on the matrix is accompanied by the induction of genes associated with attachment, migration, increased invasive potential, Ca2+ signaling and osteolysis. In summary, we show that growth of prostate cancer cells on matrices produced by primary human osteoblasts mimics key features of prostate cancer bone metastases and thus is a suitable model system to study the tumor/bone micro-environment interaction in this disease.
Resumo:
Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D) cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D) cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density. In contrast, bioengineered hydrogels allow us to independently tune and systematically investigate the influence of these parameters on cell growth and differentiation. In this study, polyethylene glycol (PEG) hydrogels, functionalized with the Arginine-glycine-aspartic acid (RGD) motifs, common cell-binding motifs in extracellular matrix proteins, and matrix metalloproteinase (MMP) cleavage sites, were characterized regarding their stiffness, diffusive properties, and ability to support growth of androgen-dependent LNCaP prostate cancer cells. We found that the mechanical properties modulated the growth kinetics of LNCaP cells in the PEG hydrogel. At culture periods of 28 days, LNCaP cells underwent morphogenic changes, forming tumor-like structures in 3D culture, with hypoxic and apoptotic cores. We further compared protein and gene expression levels between 3D and 2D cultures upon stimulation with the synthetic androgen R1881. Interestingly, the kinetics of R1881 stimulated androgen receptor (AR) nuclear translocation differed between 2D and 3D cultures when observed by immunofluorescent staining. Furthermore, microarray studies revealed that changes in expression levels of androgen responsive genes upon R1881 treatment differed greatly between 2D and 3D cultures. Taken together, culturing LNCaP cells in the tunable PEG hydrogels reveals differences in the cellular responses to androgen stimulation between the 2D and 3D environments. Therefore, we suggest that the presented 3D culture system represents a powerful tool for high throughput prostate cancer drug testing that recapitulates tumor microenvironment. © 2012 Sieh et al.
Resumo:
This work was motivated by the limited knowledge on personal exposure to ultrafine (UF) particles, especially for children (Mejía et al. 2011). Most research efforts in the past have investigated particle mass concentration and only a limited number of studies have been conducted to quantify other particle metrics, such as particle number, in the classrooms and school microenvironment in general (Diapouli et al. 2008; Guo et al. 2008; Weichenthal et al. 2008; Mullen et al. 2011).
Resumo:
The studies presented in this review explore three distinct areas with potential for inhibiting HIV infection in women. Based on emerging information from the physiology, endocrinology and immunology of the female reproductive tract (FRT), we propose unique 'works in progress' for protecting women from HIV. Various aspects of FRT immunity are suppressed by estradiol during the menstrual cycle, making women more susceptible to HIV infection. By engineering commensal Lactobacillus to secrete the anti-HIV molecule Elafin as estradiol levels increase, women could be protected from HIV infection. Selective estrogen response modifiers enhance barrier integrity and enhance secretion of protective anti-HIV molecules. Finally, understanding the interactions and regulation of FRT endogenous antimicrobials, proteases, antiproteases, etc., all of which are under hormonal control, will open new avenues to therapeutic manipulation of the FRT mucosal microenvironment. By seeking new alternatives to preventing HIV infection in women, we may finally disrupt the HIV pandemic.
Resumo:
In the past decade we have come to appreciate that the microenvironment has the potential for major influence on the cancer cell. An extreme case for this occurs when the cancer cell changes its environment in the context of metastasis, where this may in part underpin the altered biology of cells in metasases. Increasing evidence suggests that changes in the cellular microenvironment contribute to tumourigenesis and metastasis, but the molecular basis of these alterations is not well understood. Reactive stroma provides oncogenic signals to facilitate tumourigenesis and metastasis—co-implantation of normal human epithelial cells in vivo with irradiated, carcinogen treated, or cancer derived fibroblasts leads to the enhancement or formation of malignant tumours.
Resumo:
Hyperactive inflammatory responses following cancer initiation have led to cancer being described as a 'wound that never heals'. These inflammatory responses elicit signals via NFκB leading to IL-6 production, and IL-6 in turn has been shown to induce epithelial to mesenchymal transition in breast cancer cells in vitro, implicating a role for this cytokine in cancer cell invasion. We previously have shown that conditioned medium derived from cancer-associated fibroblasts induced an Epithelial to Mesenchymal transition (EMT) in PMC42-LA breast cancer cells and we have now identify IL-6 as present in this medium. We further show that IL-6 is expressed approximately 100 fold higher in a cancer-associated fibroblast line compared to normal fibroblasts. Comparison of mouse-specific (stroma) and human-specific (tumor) IL-6 mRNA expression from MCF-7, MDA MB 468 and MDA MB 231 xenografts also indicated the stroma rather than tumor as a significantly higher source of IL-6 expression. Mast cells (MCs) feature in inflammatory cancer-associated stroma, and activated MCs secrete IL-6. We observed a higher MC index (average number of mast cells per xenograft section/average tumor size) in MDA MB 468 compared to MDA MB 231 xenografts, where all MC were observed to be active (degranulating). This higher MC index correlated with greater mouse-specific IL-6 expression in the MDA MB 468 xenografts, implicating MC as an important source of stromal IL-6. Furthermore, immunohistochemistry on these xenografts for pSTAT3, which lies downstream of the IL-6 receptor indicated frequent correlations between pSTAT3 and mast cell positive cells. Analysis of publically available databases for IL-6 expression in patient tissue revealed higher IL-6 in laser capture microdissected stroma compared to adjacent tissue epithelium from patients with inflammatory breast cancer (IBC) and invasive non-inflammatory breast cancer (non-IBC) and we show that IL-6 expression was significantly higher in Basal versus Luminal molecular/phenotypic groupings of breast cancer cell lines. Finally, we discuss how afferent and efferent IL-6 pathways may participate in a positive feedback cycle to dictate tumor progression.
Resumo:
This project characterised the bone microarchitecture of adult mice lacking the hormone, acyl ghrelin, by high resolution micro-computed tomography; and investigated the expression of the ghrelin axis in cells of human and mouse fetal cartilage. This thesis highlights for the first time the physiological role of the ghrelin axis in the bone microenvironment of aged mice. Furthermore it improves our understanding of the complex expression patterns of the ghrelin axis in cartilage cells of human and mouse fetal skeletons.
Resumo:
One of the hallmarks of cancer is the ability to activate invasion and metastasis (Hanahan et al., 2011). Cancer morbidity and mortality are largely related to the spread of the primary, localised tumour to adjacent and distant sites (Pantel et al., 2004). Appropriate management and treatment decisions of predicting metastatic disease at the time of diagnosis is thus crucial, which supports better understanding of the metastatic process. There are common events that occur during metastasis: dissociation from the primary tumour mass, reorganisation/remodelling of extracellular matrix, cell migration, recognition and transversal of endothelial cells and the vascular circulation and lodgement and proliferation within ectopic stroma (Wells, 2006). One of the key and initial events is the increased capability of cancer cells to move, escaping the regulation of normal physiological control. The cellular cytoskeleton plays an important role in cancer cell motility and active cytoskeletal rearrangement can result in metastatic disease. This active change in cytoskeletal dynamics results in manipulation of plasma membrane and cellular balance between cellular adhesion and motility which in turn determines cancer cell movement. Members of the tetraspanins play important roles in regulation of cancer migration and cancer-endothelial cell interactions, which are critical for cancer invasion and metastasis. Their involvements in active cytoskeletal dynamics, cancer metastasis and potential clinical application will be discussed in this review. In particular, tetraspanin member, CD151, is highlighted for its major role in cancer invasion and metastasis