970 resultados para Artificial learning
Resumo:
[EN]Automatic facial analysis abilities are commonly integrated in a system by a previous off-line learning stage. In this paper we argue that a facial analysis system would improve its facial analysis capabilities based on its own experience similarly to the way a biological system, i.e. the human system, does throughout the years. The approach described, focused on gender classification, updates its knowledge according to the classification results. The presented gender experiments suggestthatthisapproachispromising,evenwhenjustashort simulationofwhatforhumanswouldtakeyearsofacquisition experience was performed.
Resumo:
[EN]Most face recognition systems are based on some form of batch learning. Online face recognition is not only more practical, it is also much more biologically plausible. Typical batch learners aim at minimizing both training error and (a measure of) hypothesis complexity. We show that the same minimization can be done incrementally as long as some form of ”scaffolding” is applied throughout the learning process. Scaffolding means: make the system learn from samples that are neither too easy nor too difficult at each step. We note that such learning behavior is also biologically plausible. Experiments using large sequences of facial images support the theoretical claims. The proposed method compares well with other, numerical calculus-based online learners.
Resumo:
O Grupo Poéticas Digitais foi criado em 2002, no Departamento de Artes Plásticas da ECA-USP, com a intenção de gerar um núcleo multidisciplinar, promovendo o desenvolvimento de projetos experimentais e a reflexão sobre o impacto das novas tecnologias no campo das artes. O Grupo é um desdobramento do projeto wAwRwT, iniciado em 1995 por Gilbertto Prado e tem como participantes professores, artistas, pesquisadores e estudantes. O objetivo deste texto é apresentar algumas experimentações recentes de projetos poéticos como Desluz, de 2009/2010, e Amoreiras, de 2010.
Resumo:
CULTURE is an Artificial Life simulation that aims to provide primary school children with opportunities to become actively engaged in the high-order thinking processes of problem solving and critical thinking. A preliminary evaluation of CULTURE has found that it offers the freedom for children to take part in process-oriented learning experiences. Through providing children with opportunities to make inferences, validate results, explain discoveries and analyse situations, CULTURE encourages the development of high-order thinking skills. The evaluation found that CULTURE allows users to autonomously explore the important scientific concepts of life and living, and energy and change within a software environment that children find enjoyable and easy to use.
Resumo:
The present study explored processing strategies used by individuals when they begin to read c;l script. Stimuli were artificial words created from symbols and based on an alphabetic system. The words were.presented to Grade Nine and Ten students, with variations included in the difficulty of orthography and word familiarity, and then scores were recorded on the mean number of trials for defined learning variables. Qualitative findings revealed that subjects 1 earned parts of the visual a'nd auditory features of words prior to hooking up the visual stimulus to the word's name. Performance measures-which appear to affect the rate of learning were as follows: auditory short-term memory, auditory delayed short-term memory, visual delayed short- term memory, and word attack or decod~ng skills. Qualitative data emerging in verbal reports by the subjects revealed that strategies they pefceived to use were, graphic, phonetic decoding and word .reading.
Resumo:
In this paper, we employ techniques from artificial intelligence such as reinforcement learning and agent based modeling as building blocks of a computational model for an economy based on conventions. First we model the interaction among firms in the private sector. These firms behave in an information environment based on conventions, meaning that a firm is likely to behave as its neighbors if it observes that their actions lead to a good pay off. On the other hand, we propose the use of reinforcement learning as a computational model for the role of the government in the economy, as the agent that determines the fiscal policy, and whose objective is to maximize the growth of the economy. We present the implementation of a simulator of the proposed model based on SWARM, that employs the SARSA(λ) algorithm combined with a multilayer perceptron as the function approximation for the action value function.
Resumo:
Two experiments examined the claim for distinct implicit and explicit learning modes in the artificial grammar-learning task (Reber, 1967, 1989). Subjects initially attempted to memorize strings of letters generated by a finite-state grammar and then classified new grammatical and nongrammatical strings. Experiment 1 showed that subjects' assessment of isolated parts of strings was sufficient to account for their classification performance but that the rules elicited in free report were not sufficient. Experiment 2 showed that performing a concurrent random number generation task under different priorities interfered with free report and classification performance equally. Furthermore, giving different groups of subjects incidental or intentional learning instructions did not affect classification or free report.
Resumo:
This work proposes a new approach using a committee machine of artificial neural networks to classify masses found in mammograms as benign or malignant. Three shape factors, three edge-sharpness measures, and 14 texture measures are used for the classification of 20 regions of interest (ROIs) related to malignant tumors and 37 ROIs related to benign masses. A group of multilayer perceptrons (MLPs) is employed as a committee machine of neural network classifiers. The classification results are reached by combining the responses of the individual classifiers. Experiments involving changes in the learning algorithm of the committee machine are conducted. The classification accuracy is evaluated using the area A. under the receiver operating characteristics (ROC) curve. The A, result for the committee machine is compared with the A, results obtained using MLPs and single-layer perceptrons (SLPs), as well as a linear discriminant analysis (LDA) classifier Tests are carried out using the student's t-distribution. The committee machine classifier outperforms the MLP SLP, and LDA classifiers in the following cases: with the shape measure of spiculation index, the A, values of the four methods are, in order 0.93, 0.84, 0.75, and 0.76; and with the edge-sharpness measure of acutance, the values are 0.79, 0.70, 0.69, and 0.74. Although the features with which improvement is obtained with the committee machines are not the same as those that provided the maximal value of A(z) (A(z) = 0.99 with some shape features, with or without the committee machine), they correspond to features that are not critically dependent on the accuracy of the boundaries of the masses, which is an important result. (c) 2008 SPIE and IS&T.
Resumo:
In this paper, a framework for detection of human skin in digital images is proposed. This framework is composed of a training phase and a detection phase. A skin class model is learned during the training phase by processing several training images in a hybrid and incremental fuzzy learning scheme. This scheme combines unsupervised-and supervised-learning: unsupervised, by fuzzy clustering, to obtain clusters of color groups from training images; and supervised to select groups that represent skin color. At the end of the training phase, aggregation operators are used to provide combinations of selected groups into a skin model. In the detection phase, the learned skin model is used to detect human skin in an efficient way. Experimental results show robust and accurate human skin detection performed by the proposed framework.
Resumo:
This paper investigates how to make improved action selection for online policy learning in robotic scenarios using reinforcement learning (RL) algorithms. Since finding control policies using any RL algorithm can be very time consuming, we propose to combine RL algorithms with heuristic functions for selecting promising actions during the learning process. With this aim, we investigate the use of heuristics for increasing the rate of convergence of RL algorithms and contribute with a new learning algorithm, Heuristically Accelerated Q-learning (HAQL), which incorporates heuristics for action selection to the Q-Learning algorithm. Experimental results on robot navigation show that the use of even very simple heuristic functions results in significant performance enhancement of the learning rate.
Resumo:
We address here aspects of the implementation of a memory evolutive system (MES), based on the model proposed by A. Ehresmann and J. Vanbremeersch (2007), by means of a simulated network of spiking neurons with time dependent plasticity. We point out the advantages and challenges of applying category theory for the representation of cognition, by using the MES architecture. Then we discuss the issues concerning the minimum requirements that an artificial neural network (ANN) should fulfill in order that it would be capable of expressing the categories and mappings between them, underlying the MES. We conclude that a pulsed ANN based on Izhikevich`s formal neuron with STDP (spike time-dependent plasticity) has sufficient dynamical properties to achieve these requirements, provided it can cope with the topological requirements. Finally, we present some perspectives of future research concerning the proposed ANN topology.
Resumo:
This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.
Resumo:
Rats exposed to a relatively high dose (7.5 g/kg body weight) of alcohol on either the fifth or tenth postnatal day of age have been reported to have long-lasting deficits in spatial learning ability as tested on the Morris water maze task. The question arises concerning the level of alcohol required to achieve this effect. Wistar rats were exposed to either 2, 4 or 6 g/kg body weight of ethanol administered as a 10% solution. This ethanol was given over an 8-h period on the fifth postnatal day of age by means of an intragastric cannula. Gastrostomy controls received a 5% sucrose solution substituted isocalorically for the ethanol. Another set of pups raised by their mother were used as suckle controls. All surgical procedures were carried out under halothane vapour anaesthesia. After the artificial feeding regimes all pups were returned to lactating dams and weaned at 21 days of age. The spatial learning ability of these rats was tested in the Morris water maze when they were between 61-64 days of age. This task requires the rats to swim in a pool containing water made opaque and locate and climb onto a submerged platform. The time taken to accomplish this is known as the escape latency. Each rat was subjected to 24 trials over 3 days of the test period. Statistical analysis of the escape latency data revealed that the rats given 6 g/kg body weight of ethanol had significant deficits in their spatial learning ability compared with their control groups. However, there was no significant difference in spatial learning ability for the rats given either 2 or 4 g/kg body weight of ethanol compared with their respective gastrostomy or suckle control animals. We concluded that ethanol exposure greater than 4 g/kg over an 8-h period to 5-day-old rats is required for them to develop long-term deficits in spatial learning behaviour. (C) 1998 Elsevier Science Inc.
Resumo:
The long short-term memory (LSTM) is not the only neural network which learns a context sensitive language. Second-order sequential cascaded networks (SCNs) are able to induce means from a finite fragment of a context-sensitive language for processing strings outside the training set. The dynamical behavior of the SCN is qualitatively distinct from that observed in LSTM networks. Differences in performance and dynamics are discussed.