999 resultados para Arithmetic Group
Resumo:
Neste trabalho discutimos vários sistemas de dígitos verificadores utilizados no Brasil, muitos deles semelhantes a esquemas usados mundialmente, e fazemos uma análise da sua capacidade de detectar os diversos tipos de erros que são comuns na entrada de dados em sistemas computacionais. A análise nos mostra que os esquemas escolhidos constituem decisões subotimizadas e quase nunca obtêm a melhor taxa de detecção de erros possível. Os sistemas de dígitos verificadores são baseados em três teorias da álgebra: aritmética modular, teoria de grupos e quasigrupos. Para os sistemas baseados em aritmética modular, apresentamos várias melhorias que podem ser introduzidas. Desenvolvemos um novo esquema ótimo baseado em aritmética modular base 10 com três permutações para identificadores de tamanho maior do que sete. Descrevemos também o esquema Verhoeff, já antigo, mas pouquíssimo utilizado e que também é uma alternativa de melhoria para identificadores de tamanho até sete. Desenvolvemos ainda, esquemas ótimos para qualquer base modular prima que detectam todos os tipos de erros considerados. A dissertação faz uso ainda de elementos da estatística, no estudo das probabilidades de detecção de erros e de algoritmos, na obtenção de esquemas ótimos.
Resumo:
We prove that the first complex homology of the Johnson subgroup of the Torelli group Tg is a non-trivial, unipotent Tg-module for all g ≥ 4 and give an explicit presentation of it as a Sym H 1(Tg,C)-module when g ≥ 6. We do this by proving that, for a finitely generated group G satisfying an assumption close to formality, the triviality of the restricted characteristic variety implies that the first homology of its Johnson kernel is a nilpotent module over the corresponding Laurent polynomial ring, isomorphic to the infinitesimal Alexander invariant of the associated graded Lie algebra of G. In this setup, we also obtain a precise nilpotence test. © European Mathematical Society 2014.
Resumo:
2000 Mathematics Subject Classification: 11G15, 11G18, 14H52, 14J25, 32L07.
Resumo:
This paper improves implementation techniques of Elliptic Curve Cryptography. We introduce new formulae and algorithms for the group law on Jacobi quartic, Jacobi intersection, Edwards, and Hessian curves. The proposed formulae and algorithms can save time in suitable point representations. To support our claims, a cost comparison is made with classic scalar multiplication algorithms using previous and current operation counts. Most notably, the best speeds are obtained from Jacobi quartic curves which provide the fastest timings for most scalar multiplication strategies benefiting from the proposed 12M + 5S + 1D point doubling and 7M + 3S + 1D point addition algorithms. Furthermore, the new addition algorithm provides an efficient way to protect against side channel attacks which are based on simple power analysis (SPA). Keywords: Efficient elliptic curve arithmetic,unified addition, side channel attack.
Resumo:
We derive an explicit method of computing the composition step in Cantor’s algorithm for group operations on Jacobians of hyperelliptic curves. Our technique is inspired by the geometric description of the group law and applies to hyperelliptic curves of arbitrary genus. While Cantor’s general composition involves arithmetic in the polynomial ring F_q[x], the algorithm we propose solves a linear system over the base field which can be written down directly from the Mumford coordinates of the group elements. We apply this method to give more efficient formulas for group operations in both affine and projective coordinates for cryptographic systems based on Jacobians of genus 2 hyperelliptic curves in general form.
Resumo:
Let l be any odd prime, and ζ a primitive l-th root of unity. Let C_l be the l-Sylow subgroup of the ideal class group of Q(ζ). The Teichmüller character w : Z_l → Z^*_l is given by w(x) = x (mod l), where w(x) is a p-1-st root of unity, and x ∈ Z_l. Under the action of this character, C_l decomposes as a direct sum of C^((i))_l, where C^((i))_l is the eigenspace corresponding to w^i. Let the order of C^((3))_l be l^h_3). The main result of this thesis is the following: For every n ≥ max( 1, h_3 ), the equation x^(ln) + y^(ln) + z^(ln) = 0 has no integral solutions (x,y,z) with l ≠ xyz. The same result is also proven with n ≥ max(1,h_5), under the assumption that C_l^((5)) is a cyclic group of order l^h_5. Applications of the methods used to prove the above results to the second case of Fermat's last theorem and to a Fermat-like equation in four variables are given.
The proof uses a series of ideas of H.S. Vandiver ([Vl],[V2]) along with a theorem of M. Kurihara [Ku] and some consequences of the proof of lwasawa's main conjecture for cyclotomic fields by B. Mazur and A. Wiles [MW]. In [V1] Vandiver claimed that the first case of Fermat's Last Theorem held for l if l did not divide the class number h^+ of the maximal real subfield of Q(e^(2πi/i)). The crucial gap in Vandiver's attempted proof that has been known to experts is explained, and complete proofs of all the results used from his papers are given.
Resumo:
Economic dispatch (ED) problems often exhibit non-linear, non-convex characteristics due to the valve point effects. Further, various constraints and factors, such as prohibited operation zones, ramp rate limits and security constraints imposed by the generating units, and power loss in transmission make it even more challenging to obtain the global optimum using conventional mathematical methods. Meta-heuristic approaches are capable of solving non-linear, non-continuous and non-convex problems effectively as they impose no requirements on the optimization problems. However, most methods reported so far mainly focus on a specific type of ED problems, such as static or dynamic ED problems. This paper proposes a hybrid harmony search with arithmetic crossover operation, namely ACHS, for solving five different types of ED problems, including static ED with valve point effects, ED with prohibited operating zones, ED considering multiple fuel cells, combined heat and power ED, and dynamic ED. In this proposed ACHS, the global best information and arithmetic crossover are used to update the newly generated solution and speed up the convergence, which contributes to the algorithm exploitation capability. To balance the exploitation and exploration capabilities, the opposition based learning (OBL) strategy is employed to enhance the diversity of solutions. Further, four commonly used crossover operators are also investigated, and the arithmetic crossover shows its efficiency than the others when they are incorporated into HS. To make a comprehensive study on its scalability, ACHS is first tested on a group of benchmark functions with a 100 dimensions and compared with several state-of-the-art methods. Then it is used to solve seven different ED cases and compared with the results reported in literatures. All the results confirm the superiority of the ACHS for different optimization problems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Studies show the positive effects that video games can have on student performance and attitude towards learning. In the past few years, strategies have been generated to optimize the use of technological resources with the aim of facilitating widespread adoption of technology in the classroom. Given its low acquisition and maintenance costs, the interpersonal computer allows individual interaction and simultaneous learning with large groups of students. The purpose of this work was to compare arithmetical knowledge acquired by third-grade students through the use of game-based activities and non-game-based activities using an interpersonal computer, with knowledge acquired through the use of traditional paper-and-pencil activities, and to analyze their impact in various socio-cultural contexts. To do this, a quasi-experimental study was conducted with 271 students in three different countries (Brazil, Chile, and Costa Rica), in both rural and urban schools. A set of educational games for practising arithmetic was developed and tested in six schools within these three countries. Results show that there were no significant differences (ANCOVA) in the learning acquired from game-based vs. non-game-based activities. However, both showed a significant difference when compared with the traditional method. Additionally, both groups using the interpersonal computer showed higher levels of student interest than the traditional method group, and these technological methods were seen to be especially effective in increasing learning among weaker students.
Resumo:
In this paper we show that the quaternion orders OZ[ √ 2] ≃ ( √ 2, −1)Z[ √ 2] and OZ[ √ 3] ≃ (3 + 2√ 3, −1)Z[ √ 3], appearing in problems related to the coding theory [4], [3], are not maximal orders in the quaternion algebras AQ( √ 2) ≃ ( √ 2, −1)Q( √ 2) and AQ( √ 3) ≃ (3 + 2√ 3, −1)Q( √ 3), respectively. Furthermore, we identify the maximal orders containing these orders.
Resumo:
We consider quadrate matrices with elements of the first row members of an arithmetic progression and of the second row members of other arithmetic progression. We prove the set of these matrices is a group. Then we give a parameterization of this group and investigate about some invariants of the corresponding geometry. We find an invariant of any two points and an invariant of any sixth points. All calculations are made by Maple.
Resumo:
Incontinentia Pigmenti (IP, OMIM#308300) is a rare X-linked genomic disorder (about 1,400 cases) that affects the neuroectodermal tissue and Central Nervous System (CNS). The objective of this study was to describe the cognitive-behavioural profile in children in order to plan a clinical intervention to improve their quality of life. A total of 14 girls (age range: from 1 year and 2 months to 12 years and 10 months) with IP and the IKBKG/NEMO gene deletion were submitted to a cognitive assessment including intelligence scales, language and visuo-spatial competence tests, learning ability tests, and a behavioural assessment. Five girls had severe to mild intellectual deficiencies and the remaining nine had a normal neurodevelopment. Four girls were of school age and two of these showed no intellectual disability, but had specific disabilities in calculation and arithmetic reasoning. This is the first description of the cognitive-behavioural profile in relation to developmental age. We stress the importance of an early assessment of learning abilities in individuals with IP without intellectual deficiencies to prevent the onset of any such deficit.