910 resultados para Archives -- Access control
Resumo:
Information and Communications Technologies globally are moving towards Service Oriented Architectures and Web Services. The healthcare environment is rapidly moving to the use of Service Oriented Architecture/Web Services systems interconnected via this global open Internet. Such moves present major challenges where these structures are not based on highly trusted operating systems. This paper argues the need of a radical re-think of access control in the contemporary healthcare environment in light of modern information system structures, legislative and regulatory requirements, and security operation demands in Health Information Systems. This paper proposes the Open and Trusted Health Information Systems (OTHIS), a viable solution including override capability to the provision of appropriate levels of secure access control for the protection of sensitive health data.
Resumo:
The ultimate goal of an authorisation system is to allocate each user the level of access they need to complete their job - no more and no less. This proves to be challenging in an organisational setting because on one hand employees need enough access to perform their tasks, while on the other hand more access will bring about an increasing risk of misuse - either intentionally, where an employee uses the access for personal benefit, or unintentionally through carelessness, losing the information or being socially engineered to give access to an adversary. With the goal of developing a more dynamic authorisation model, we have adopted a game theoretic framework to reason about the factors that may affect users’ likelihood to misuse a permission at the time of an access decision. Game theory provides a useful but previously ignored perspective in authorisation theory: the notion of the user as a self-interested player who selects among a range of possible actions depending on their pay-offs.
Resumo:
In dynamic and uncertain environments such as healthcare, where the needs of security and information availability are difficult to balance, an access control approach based on a static policy will be suboptimal regardless of how comprehensive it is. The uncertainty stems from the unpredictability of users’ operational needs as well as their private incentives to misuse permissions. In Role Based Access Control (RBAC), a user’s legitimate access request may be denied because its need has not been anticipated by the security administrator. Alternatively, even when the policy is correctly specified an authorised user may accidentally or intentionally misuse the granted permission. This paper introduces a novel approach to access control under uncertainty and presents it in the context of RBAC. By taking insights from the field of economics, in particular the insurance literature, we propose a formal model where the value of resources are explicitly defined and an RBAC policy (entailing those predictable access needs) is only used as a reference point to determine the price each user has to pay for access, as opposed to representing hard and fast rules that are always rigidly applied.
Resumo:
In dynamic and uncertain environments, where the needs of security and information availability are difficult to balance, an access control approach based on a static policy will be suboptimal regardless of how comprehensive it is. Risk-based approaches to access control attempt to address this problem by allocating a limited budget to users, through which they pay for the exceptions deemed necessary. So far the primary focus has been on how to incorporate the notion of budget into access control rather than what or if there is an optimal amount of budget to allocate to users. In this paper we discuss the problems that arise from a sub-optimal allocation of budget and introduce a generalised characterisation of an optimal budget allocation function that maximises organisations expected benefit in the presence of self-interested employees and costly audit.
Resumo:
Security and privacy in electronic health record systems have been hindering the growth of e-health systems since their emergence. The development of policies that satisfy the security and privacy requirements of different stakeholders in healthcare has proven to be difficult. But, these requirements have to be met if the systems developed are to succeed in achieving their intended goals. Access control is a fundamental security barrier for securing data in healthcare information systems. In this paper we present an access control model for electronic health records. We address patient privacy requirements, confidentiality of private information and the need for flexible access for health professionals for electronic health records. We carefully combine three existing access control models and present a novel access control model for EHRs which satisfies requirements of electronic health records.
Resumo:
Physical access control systems play a central role in the protection of critical infrastructures, where both the provision of timely access and preserving the security of sensitive areas are paramount. In this paper we discuss the shortcomings of existing approaches to the administration of physical access control in complex environments. At the heart of the problem is the current dependency on human administrators to reason about the implications of the provision or the revocation of staff access to an area within these facilities. We demonstrate how utilising Building Information Models (BIMs) and the capabilities they provide, including 3D representation of a facility and path-finding can reduce possible intentional or accidental errors made by security administrators.
Resumo:
The suitability of Role Based Access Control (RBAC) is being challenged in dynamic environments like healthcare. In an RBAC system, a user's legitimate access may be denied if their need has not been anticipated by the security administrator at the time of policy specification. Alternatively, even when the policy is correctly specified an authorised user may accidentally or intentionally misuse the granted permission. The heart of the challenge is the intrinsic unpredictability of users' operational needs as well as their incentives to misuse permissions. In this paper we propose a novel Budget-aware Role Based Access Control (B-RBAC) model that extends RBAC with the explicit notion of budget and cost, where users are assigned a limited budget through which they pay for the cost of permissions they need. We propose a model where the value of resources are explicitly defined and an RBAC policy is used as a reference point to discriminate the price of access permissions, as opposed to representing hard and fast rules for making access decisions. This approach has several desirable properties. It enables users to acquire unassigned permissions if they deem them necessary. However, users misuse capability is always bounded by their allocated budget and is further adjustable through the discrimination of permission prices. Finally, it provides a uniform mechanism for the detection and prevention of misuses.
Resumo:
Private data stored on smartphones is a precious target for malware attacks. A constantly changing environment, e.g. switching network connections, can cause unpredictable threats, and require an adaptive approach to access control. Context-based access control is using dynamic environmental information, including it into access decisions. We propose an "ecosystem-in-an-ecosystem" which acts as a secure container for trusted software aiming at enterprise scenarios where users are allowed to use private devices. We have implemented a proof-of-concept prototype for an access control framework that processes changes to low-level sensors and semantically enriches them, adapting access control policies to the current context. This allows the user or the administrator to maintain fine-grained control over resource usage by compliant applications. Hence, resources local to the trusted container remain under control of the enterprise policy. Our results show that context-based access control can be done on smartphones without major performance impact.
Resumo:
The ultimate goal of an access control system is to allocate each user the precise level of access they need to complete their job - no more and no less. This proves to be challenging in an organisational setting. On one hand employees need enough access to the organisation’s resources in order to perform their jobs and on the other hand more access will bring about an increasing risk of misuse - either intentionally, where an employee uses the access for personal benefit, or unintentionally, through carelessness or being socially engineered to give access to an adversary. This thesis investigates issues of existing approaches to access control in allocating optimal level of access to users and proposes solutions in the form of new access control models. These issues are most evident when uncertainty surrounding users’ access needs, incentive to misuse and accountability are considered, hence the title of the thesis. We first analyse access control in environments where the administrator is unable to identify the users who may need access to resources. To resolve this uncertainty an administrative model with delegation support is proposed. Further, a detailed technical enforcement mechanism is introduced to ensure delegated resources cannot be misused. Then we explicitly consider that users are self-interested and capable of misusing resources if they choose to. We propose a novel game theoretic access control model to reason about and influence the factors that may affect users’ incentive to misuse. Next we study access control in environments where neither users’ access needs can be predicted nor they can be held accountable for misuse. It is shown that by allocating budget to users, a virtual currency through which they can pay for the resources they deem necessary, the need for a precise pre-allocation of permissions can be relaxed. The budget also imposes an upper-bound on users’ ability to misuse. A generalised budget allocation function is proposed and it is shown that given the context information the optimal level of budget for users can always be numerically determined. Finally, Role Based Access Control (RBAC) model is analysed under the explicit assumption of administrators’ uncertainty about self-interested users’ access needs and their incentives to misuse. A novel Budget-oriented Role Based Access Control (B-RBAC) model is proposed. The new model introduces the notion of users’ behaviour into RBAC and provides means to influence users’ incentives. It is shown how RBAC policy can be used to individualise the cost of access to resources and also to determine users’ budget. The implementation overheads of B-RBAC is examined and several low-cost sub-models are proposed.
Resumo:
Information privacy is a critical success/failure factor in information technology supported healthcare (eHealth). eHealth systems utilise electronic health records (EHR) as the main source of information, thus, implementing appropriate privacy preserving methods for EHRs is vital for the proliferation of eHealth. Whilst information privacy may be a fundamental requirement for eHealth consumers, healthcare professionals demand non-restricted access to patient information for improved healthcare delivery, thus, creating an environment where stakeholder requirements are contradictory. Therefore, there is a need to achieve an appropriate balance of requirements in order to build successful eHealth systems. Towards achieving this balance, a new genre of eHealth systems called Accountable-eHealth (AeH) systems has been proposed. In this paper, an access control model for EHRs is presented that can be utilised by AeH systems to create information usage policies that fulfil both stakeholders’ requirements. These policies are used to accomplish the aforementioned balance of requirements creating a satisfactory eHealth environment for all stakeholders. The access control model is validated using a Web based prototype as a proof of concept.
Resumo:
Using Media-Access-Control (MAC) address for data collection and tracking is a capable and cost effective approach as the traditional ways such as surveys and video surveillance have numerous drawbacks and limitations. Positioning cell-phones by Global System for Mobile communication was considered an attack on people's privacy. MAC addresses just keep a unique log of a WiFi or Bluetooth enabled device for connecting to another device that has not potential privacy infringements. This paper presents the use of MAC address data collection approach for analysis of spatio-temporal dynamics of human in terms of shared space utilization. This paper firstly discuses the critical challenges and key benefits of MAC address data as a tracking technology for monitoring human movement. Here, proximity-based MAC address tracking is postulated as an effective methodology for analysing the complex spatio-temporal dynamics of human movements at shared zones such as lounge and office areas. A case study of university staff lounge area is described in detail and results indicates a significant added value of the methodology for human movement tracking. By analysis of MAC address data in the study area, clear statistics such as staff’s utilisation frequency, utilisation peak periods, and staff time spent is obtained. The analyses also reveal staff’s socialising profiles in terms of group and solo gathering. The paper is concluded with a discussion on why MAC address tracking offers significant advantages for tracking human behaviour in terms of shared space utilisation with respect to other and more prominent technologies, and outlines some of its remaining deficiencies.