967 resultados para Arabidopsis thaliana


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptide-specific antibody AABI, raised to the C-terminal 13 amino acids of Arabidopsis thaliana beta 1 tubulin, identifies a single electrophoretically separable beta-tubulin on 2-D-gel Western blots of total protein extracts from A. thaliana seedlings. We show that AABI crossreacts with two of the eight polyglutamylated beta-tubulin isoforms present in purified Nicotiana tabacum tubulin fractionated by high-resolution isoelectric focussing. Immunolocalisation studies using AAB1 revealed that the two N. tabacum polyglutamylated beta 1-tubulin isoforms are utilised in all four plant microtubule arrays (the interphase cortical array, the preprophase band, the spindle and the phragmoplast) indicating that there is no apparent subcellular sorting of these isotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane currents were recorded under voltage clamp from root hairs of Arabidopsis thaliana L. using the two-electrode method. Concurrent measurements of membrane voltage distal to the point of current injection were also carried out to assess the extent of current dissipation along the root hair axis. Estimates of the characteristic cable length, λ, showed this parameter to be a function both of membrane voltage and of substrate concentration for transport. The mean value for λ at 0 mV was 103 ± 20 μm (n=17), but ranged by as much as 6-fold in any one cell for membrane voltages from -300 to +40 mV and was affected by 0.25 to 3-fold at any one voltage on raising [K+]0 from 0.1 to 10 mol m-3. Current dissipation along the length of the cells lead to serious distortions of the current-voltage [I-V) characteristic, including consistent underestimates of membrane current as well as a general linearization of the I-V curve and a masking of conductance changes in the presence of transported substrates. In some experiments, microelectrodes were also placed in neighbouring epidermal cells to record the extent of intercellular coupling. Even with current-passing microelectrodes placed at the base of root hairs, coupling was ≤5% (voltage deflection of the epidermal cell ≤5% that recorded at the site of current injection), indicating an appreciable resistance to current passage between cells. These results demonstrate the feasibility of using root hairs as a 'single-cell model' in electrophysiological analyses of transport across the higher-plant plasma membrane; they also confirmed the need to correct for the cable properties of these cells on a cell-by-cell basis. © 1994 Oxford University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DOG1 is a key regulator of seed dormancy in Arabidopsis and other plants. Interestingly, the C-terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis DOG1 transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3' processing complex display weakened seed dormancy in parallel with defects in DOG1 proximal polyadenylation site selection, suggesting that the short DOG1 transcript, is functional. This is corroborated by the finding that the proximally polyadenylated short DOG1 mRNA is translated in vivo and complements the dog1 mutation. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated DOG1 mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterize a set of mutants in RNA 3' processing complex required for production of proximally polyadenylated functional DOG1 transcript.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mest., Engenharia Biológica, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Biologia do Desenvolvimento), Universidade de Lisboa, Faculdade de Ciências, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Molecular Biology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the beta-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the beta-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Le transfert du phosphate des racines vers les feuilles s'effectue par la voie du xylème. Il a été précédemment démontré que la protéine AtPHO1 était indispensable au transfert du phosphate dans les vaisseaux du xylème des racines chez la plante modèle Arabidopsis thaliana. Le séquençage et l'annotation du génome d'Arabidopsis ont permis d'identifier dix séquences présentant un niveau de similarité significatif avec le gène AtPHO1 et constituant une nouvelle famille de gène appelé la famille de AtPHO1. Basée sur une étude moléculaire et génétique, cette thèse apporte des éléments de réponse pour déterminer le rôle des membres de ia famille de AtPHO1 chez Arabidopsis, inconnue à ce jour. Dans un premier temps, une analyse bioinformatique des séquences protéiques des membres de la famille de AtPHO1 a révélé la présence dans leur région N-terminale d'un domaine nommé SPX. Ce dernier est conservé parmi de nombreuses protéines impliquées dans l'homéostasie du phosphate chez la levure, renforçant ainsi l'hypothèse que les membres de la famille de AtPHO1 auraient comme AtPHO1 un rôle dans l'équilibre du phosphate dans la plante. En parallèle, la localisation tissulaire de l'expression des gènes AtPHO dans Arabidopsis a été identifiée par l'analyse de plantes transgéniques exprimant le gène rapporteur uidA sous le contrôle des promoteurs respectifs des gènes AtPHO. Un profil d'expression de chaque gène AtPHO au cours du développement de la plante a été obtenu. Une expression prédominante au niveau des tissus vasculaires des racines, des feuilles, des tiges et des fleurs a été observée, suggérant que les gènes AtPHO pourraient avoir des fonctions redondantes au niveau du transfert de phosphate dans le cylindre vasculaire de ces différents organes. Toutefois, plusieurs régions promotrices des gènes AtPHO contrôlent également un profil d'expression GUS non-vasculaire, indiquant un rôle putatif des gènes AtPHO dans l'acquisition ou le recyclage de phosphate dans la plante. Dans un deuxième temps, l'analyse de l'expression des gènes AtPHO durant une carence en phosphate a établi que seule l'expression des gènes AtPHO1, AtPHO1; H1 et AtPHO1; H10 est régulée par cette carence. Une étude approfondie de leur expression en réponse à des traitements affectant l'homéostasie du phosphate dans la plante a ensuite démontré leur régulation par différentes voies de signalisation. Ensuite, une analyse détaillée de la régulation de l'expression du gène AtPHO1; H1O dans des feuilles d'Arabidopsis blessées ou déshydratées a révélé que ce gène constitue le premìer gène marqueur d'une nouvelle voie de signalisation induite par l'OPDA, pas par le JA et dépendante de la protéine COI1. Ces résultats démontrent pour la première fois que l'OPDA et le JA peuvent activer différents gènes via des voies de signalisation dépendantes de COI1. Enfin, cette thèse révèle l'identification d'un nouveau rôle de la protéine AtPHO1 dans la régulation de l'action de l'ABA au cours des processus de fermeture stomatique et de germination des graines chez Arabidopsis. Bien que les fonctions exactes des protéines AtPHO restent à être déterminées, ce travail de thèse suggère leur implication dans la propagation de différents signaux dans la plante via la modulation du potentiel membranaire et/ou l'affectation de la composition en ions des cellules comme le font de nombreux transporteurs ou régulateur du transport d'ions. Summary Phosphate is transferred from the roots to the shoot via the xylem. The requirement for AtPHO1 protein to transfer phosphate to the xylem vessels of the root has been previously demonstrated in Arabidopsis thaliana. The sequencing and the annotation of the Arabidopsis genome had allowed the identification of ten sequences that show a significant level of similarity with the AtPHO1 gene. These 10 genes, of unknown functions, constitute a new gene family called the AtPHO1 gene family. Based on a molecular and genetics study, this thesis reveals some information needed to understand the role of the AtPHO1 family members in the plant Arabidopsis. First, a bioinformatics study revealed that the AtPHO sequences contained, in the N-terminal hydrophilic region, a motif called SPX and conserved among multiple proteins involved in phosphate homeostasis in yeast. This finding reinforces the hypothesis that all AtPHO1 family members have, as AtPHO1, a role in phosphate homeostasis. In parallel, we identified the pattern of expression of AtPHO genes in Arabidopsis via analysis of transgenic plants expressing the uidA reporter gene under the control of respective AtPHO promoter regions. The results exhibit a predominant expression of AtPHO genes in vascular tissues of all organs of the plant, implying that these AtPHO genes could have redundant functions in the transfer of phosphate to the vascular cylinder of various organs. The GUS expression pattern for several AtPHO promoter regions was also detected in non-vascular tissue indicating a broad role of AtPHO genes in the acquisition or in the recycling of phosphate in the plant. In a second step, the analysis of the expression of AtPHO genes during phosphate starvation established that only the expression of the AtPHO1, AtPHO1; H1 and AtPHO1; H10 genes were regulated by Pi starvation. Interestingly, different signalling pathways appeared to regulate these three genes during various treatments affecting Pi homeostasis in the plant. The third chapter presents a detailed analysis of the signalling pathways regulating the expression of the AtPHO1; H10 gene in Arabidopsis leaves during wound and dehydrated stresses. Surprisingly, the expression of AtPHO1; H10 was found to be regulated by OPDA (the precursor of JA) but not by JA itself and via the COI1 protein (the central regulator of the JA signalling pathway). These results demonstrated for the first time that OPDA and JA could activate distinct genes via COI1-dependent pathways. Finally, this thesis presents the identification of a novel role of the AtPHO1 protein in the regulation of ABA action in Arabidopsis guard cells and during seed germination. Although the exact role and function of AtPHO1 still need to be determined, these last findings suggest that AtPHO1 and by extension other AtPHO proteins could mediate the propagation of various signals in the plant by modulating the membrane potential and/or by affecting cellular ion composition, as it is the case for many ion transporters or regulators of ion transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arabidopsis is a model plant used to study disease resistance; Solanum tuberosum or potato is a crop species. Both plants possess inducible defense mechanisms that are deployed upon recognition of pathogen invasion. Transcriptional reprogramming is crucial to the activation of defense responses. The Pathogenesis-Related (PR) genes are activated in these defense programs. Expression of Arabidopsis PR-l and potato PR-10a serve as markers for the deployment of defense responses in these plants. PR-l expression indicates induction of systemic acquired resistance (SAR). Activation of SAR requires accumulation of salicylic acid (SA), in addition to the interaction of the non-expressor of pathogenesis-related genes I (NPRI), with the TGA transcription factors. The PR-10a is activated in response to pathogen invasion, wounding and elicitor treatment. PR-10a induction requires recruitment of the Whirly I (Whyl) activator to the promoter. This locus is also negatively regulated by the silencer element binding factor (SEBF). We established that both the PR-l and PR-10a are occupied by repressors under non-inducing conditions. TGA2 was found to be a constitutive resident and repressor of PR-l, which mediates repression by forming an oligomeric complex on the promoter. The DNA-binding activity of this oligomer required the TGA2 N-terminus (NT). Under resting conditions we determined that the PR-10a is bound by a repressosome containing SEBF and curiously the activator Pto interacting protein 4 (Pti4). In the context of this repressosome, SEBF is responsible for PR-10a binding, yet rWe also showed that PR-l and PR-10a are activated by different means. In PR-l activation the NPRI NT domain alleviates TGA2-mediated repression by interacting with the TGA2 NT. TGA2 remains at the PR-l but adopts a dimeric conformation and forms an enhanceosome with NPRl. In contrast, the PR-10a is activated by evicting the repressosome and recruiting Why! to the promoter. These results advance our understanding of the mechanisms regulating PR-l and PR-10a expression under resting and inducing conditions. This study also revealed that the means of regulation for related genes can differ greatly between model and crop s

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arabidopsis thaliana is an established model plant system for studying plantpathogen interactions. The knowledge garnered from examining the mechanism of induced disease resistance in this model system can be applied to eliminate the cost and danger associated with current means of crop protection. A specific defense pathway, known as systemic acquired resistance (SAR), involves whole plant protection from a wide variety of bacterial, viral and fungal pathogens and remains induced weeks to months after being triggered. The ability of Arabidopsis to mount SAR depends on the accumulation of salicylic acid (SA), the NPRI (non-expressor of pathogenesis related gene 1) protein and the expression of a subset of pathogenesis related (PR) genes. NPRI exerts its effect in this pathway through interaction with a closely related class of bZIP transcription factors known as TGA factors, which are named for their recognition of the cognate DNA motif TGACG. We have discovered that one of these transcription factors, TGA2, behaves as a repressor in unchallenged Arabidopsis and acts to repress NPRI-dependent activation of PRJ. TGA1, which bears moderate sequence similarity to TGA2, acts as a transcriptional activator in unchallenged Arabidopsis, however the significance of this activity is J unclear. Once SAR has been induced, TGAI and TGA2 interact with NPRI to form complexes that are capable of activating transcription. Curiously, although TGAI is capable of transactivating, the ability of the TGAI-NPRI complex to activate transcription results from a novel transactivation domain in NPRI. This transactivation domain, which depends on the oxidation of cysteines 521 and 529, is also responsible for the transactivation ability of the TGA2-NPRI complex. Although the exact mechanism preventing TGA2-NPRI interaction in unchallenged Arabidopsis is unclear, the regulation of TGAI-NPRI interaction is based on the redox status of cysteines 260 and 266 in TGAl. We determined that a glutaredoxin, which is an enzyme capable of regulating a protein's redox status, interacts with the reduced form of TGAI and this interaction results .in the glutathionylation of TGAI and a loss of interaction with NPRl. Taken together, these results expand our understanding of how TGA transcription factors and NPRI behave to regulate events and gene expression during SAR. Furthermore, the regulation of the behavior of both TGAI and NPRI by their redox status and the involvement of a glutaredoxin in modulating TGAI-NPRI interaction suggests the redox regulation of proteins is a general mechanism implemented in SAR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During infection, the model plant Arabidopsis thaliana is capable of activating long lasting defence responses both in tissue directly affected by the pathogen and in more distal tissue. Systemic acquired resistance (SAR) is a type of systemic defence response deployed against biotrophic pathogens resulting in altered plant gene expression and production of antimicrobial compounds. One such gene involved in plant defence is called pathogenesis-related 1 (PR1) and is under the control of several protein regulators. TGA II-clade transcription factors (namely TGA2) repress PR1 activity prior to infection by forming large oligomeric complexes effectively blocking gene transcription. After pathogen detection, these complexes are dispersed by a mechanism unknown until now and free TGA molecules interact with the non-expressor of pathogenesis-related gene 1 (NPR1) protein forming an activating complex enabling PR1 transcription. This study elucidates the TGA2 dissociation mechanism by introducing protein kinase CK2 into this process. This enzyme efficiently phosphorylates TGA2 resulting in two crucial events. Firstly, the DNA-binding ability of this transcription factor is completely abolished explaining how the large TGA2 complexes are quickly evicted from the PR1 promoter. Secondly, a portion of TGA2 molecules dissociate from the complexes after phosphorylation which likely makes them available for the formation of the TGA2-NPR1 activating complex. We also show that phosphorylation of a multiserine motif found within TGA2’s N terminus is responsible for the change of affinity to DNA, while modification of a single threonine in the leucine zipper domain seems to be responsible for deoligomerization. Despite the substantial changes caused by phosphorylation, TGA2 is still capable of interacting with NPR1 and these proteins together form a complex on DNA promoting PR1 transcription. Therefore, we propose a change in the current model of how PR1 is regulated by adding CK2 which targets TGA2 displacing it’s complexes from the promoter and providing solitary TGA2 molecules for assembly of the activating complex. Amino acid sequences of regions targeted by CK2 in Arabidopsis TGA2 are similar to those found in TGA2 homologs in rice and tobacco. Therefore, the molecular mechanism that we have identified may be conserved among various plants, including important crop species, adding to the significance of our findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le maintien de la stabilité du génome est essentiel pour la propagation de l’information génétique et pour la croissance et la survie des cellules. Tous les organismes possèdent des systèmes de prévention des dommages et des réarrangements de l’ADN et nos connaissances sur ces processus découlent principalement de l’étude des génomes bactériens et nucléaires. Comparativement peu de choses sont connues sur les systèmes de protection des génomes d’organelles. Cette étude révèle l’importance des protéines liant l’ADN simple-brin de la famille Whirly dans le maintien de la stabilité du génome des organelles de plantes. Nous rapportons que les Whirlies sont requis pour la stabilité du génome plastidique chez Arabidopsis thaliana et Zea mays. L’absence des Whirlies plastidiques favorise une accumulation de molécules rearrangées produites par recombinaison non-homologue médiée par des régions de microhomologie. Ce mécanisme est similaire au “microhomology-mediated break-induced replication” (MMBIR) retrouvé chez les bactéries, la levure et l’humain. Nous montrons également que les organelles de plantes peuvent réparer les bris double-brin en utilisant une voie semblable au MMBIR. La délétion de différents membres de la famille Whirly entraîne une accumulation importante de réarrangements dans le génome des organelles suite à l’induction de bris double-brin. Ces résultats indiquent que les Whirlies sont aussi importants pour la réparation fidèle des génomes d’organelles. En se basant sur des données biologiques et structurales, nous proposons un modèle où les Whirlies modulent la disponibilité de l’ADN simple-brin, régulant ainsi le choix des voies de réparation et permettant le maintien de la stabilité du génome des organelles. Les divers aspects de ce modèle seront testés au cours d’expériences futures ce qui mènera à une meilleure compréhension du maintien de la stabilité du génome des organelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Au cours du développement des végétaux, de l’établissement de l’identité cellulaire des premiers organes au guidage du tube pollinique, la communication cellule à cellule est d’une importance capitale. En réponse, les voies de signalisation moléculaires sont élaborées pour la perception d’un signal extérieur et la transduction en une réponse génique via une cascade intracellulaire. Les récepteurs kinases font partie des protéines perceptrices des stimuli et constituent chez les plantes une catégorie de protéines avec une occurrence considérable, mais dont très peu d’informations détaillées sont disponibles à ce jour. Une famille de récepteurs kinases chez Arabidopsis thaliana, AtORK11 (Arabidopsis thaliana Ovule Receptor Kinase 11), a été identifiée par orthologie à un récepteur spécifique aux ovaires chez une solanacéee sauvage, Solanum chacoense. La fonction présumée de cette famille de récepteurs kinases de type leucine-rich repeat, suggérée par son patron d’expression, implique les événements relatifs au développement des gamétophytes et à la reproduction. Afin de caractériser la fonction des quatre gènes de la famille (AtORK11a, AtORK11b, AtORK11c et AtORK11d) une stratégie d’analyse de mutants d’insertion de l’ADN-T et d’évaluation du mode d’action par complémentation bimoléculaire par fluorescence (BiFC) a été entreprise. Aucune fonction précise n’a pu être attribuée aux doubles mutants d’insertion, par contre la surexpression d’une construction dominante négative indique un rôle dans le développement gamétophytique. Il a aussi été démontré que les quatre récepteurs peuvent interagir par homodimérisation aussi bien que par hétérodimérisation. Une hypothèse de redondance fonctionnelle est ainsi mise à jour parmi la famille des gènes AtORK11.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chez les angiospermes, la reproduction passe par la double fécondation. Le tube pollinique délivre deux cellules spermatiques au sein du gamétophyte femelle. Une cellule féconde la cellule œuf pour produire un zygote; l’autre féconde la cellule centrale pour produire l’endosperme. Pour assurer un succès reproductif, le développement du gamétophyte femelle au sein de l’ovule doit établir un patron cellulaire qui favorise les interactions avec le tube pollinique et les cellules spermatiques. Pour ce faire, un dialogue doit s’établir entre les différentes cellules de l’ovule lors de son développement, de même que lors de la fécondation. D’ailleurs, plusieurs types de communications intercellulaires sont supposées suite à la caractérisation de plusieurs mutants développementaux. De même, ces communications semblent persister au sein du zygote et de l’endosperme pour permettre la formation d’un embryon viable au sein de la graine. Malgré les développements récents qui ont permis de trouver des molécules de signalisation supportant les modèles d’interactions cellulaires avancés par la communauté scientifique, les voies de signalisation sont de loin très incomplètes. Dans le but de caractériser des gènes encodant des protéines de signalisation potentiellement impliqués dans la reproduction chez Solanum chacoense, l’analyse d’expression des gènes de type RALF présents dans une banque d’ESTs (Expressed Sequence Tags) spécifiques à l’ovule après fécondation a été entreprise. RALF, Rapid Alcalinization Factor, est un peptide de 5 kDa qui fait partie de la superfamille des «protéines riches en cystéines (CRPs)», dont les rôles physiologiques au sein de la plante sont multiples. Cette analyse d’expression a conduit à une analyse approfondie de ScRALF3, dont l’expression au sein de la plante se limite essentiellement à l’ovule. L’analyse de plantes transgéniques d’interférence pour le gène ScRALF3 a révélé un rôle particulier lors de la mégagamétogénèse. Les plantes transgéniques présentent des divisions mitotiques anormales qui empêchent le développement complet du sac embryonnaire. Le positionnement des noyaux, de même que la synchronisation des divisions au sein du syncytium, semblent responsables de cette perte de progression lors de la mégagamétogénèse. L’isolement du promoteur de même que l’analyse plus précise d’expression au sein de l’ovule révèle une localisation sporophytique du transcrit. La voie de signalisation de l’auxine régule également la transcription de ScRALF3. De surcroît, ScRALF3 est un peptide empruntant la voie de sécrétion médiée par le réticulum endoplasmique et l’appareil de Golgi. En somme, ScRALF3 est un important facteur facilitant la communication entre le sporophyte et le gamétophyte pour amener à maturité le sac embryonnaire. L’identification d’un orthologue potentiel chez Arabidopsis thaliana a conduit à la caractérisation de AtRALF34. L’absence de phénotype lors du développement du sac embryonnaire suggère, cependant, de la redondance génétique au sein de la grande famille des gènes de type RALF. Néanmoins, les peptides RALFs apparaissent comme d’importants régulateurs lors de la reproduction chez Solanum chacoense et Arabidopsis thaliana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contrairement à la plupart des eucaryotes non-photosynthétiques, les végétaux doivent assurer la stabilité d’un génome additionnel contenu dans le plastide, un organite d’origine endosymbiotique. Malgré la taille modeste de ce génome et le faible nombre de gènes qu’il encode, celui-ci est absolument essentiel au processus de photosynthèse. Pourtant, même si ce génome est d’une importance cruciale pour le développement de la plante, les principales menaces à son intégrité, ainsi que les conséquences d’une déstabilisation généralisée de sa séquence d’ADN, demeurent largement inconnues. Dans l’objectif d’élucider les conséquences de l’instabilité génomique chloroplastique, nous avons utilisé le mutant why1why3polIb d’Arabidopsis thaliana, qui présente d’importants niveaux de réarrangements génomiques chloroplastiques, ainsi que la ciprofloxacine, un composé induisant des brisures double-brins dans l’ADN des organites. Ceci nous a permis d’établir qu’une quantité importante de réarrangements génomiques provoque une déstabilisation de la chaîne de transport des électrons photosynthétique et un grave stress oxydatif associé au processus de photosynthèse. Étonnamment, chez why1why3polIb, ces hautes concentrations d’espèces oxygénées réactives ne mènent ni à la perte de fonction des chloroplastes affectés, ni à la mort cellulaire des tissus. Bien au contraire, ce déséquilibre rédox semble être à l’origine d’une reprogrammation génique nucléaire permettant de faire face à ce stress photosynthétique et conférant une tolérance aux stress oxydatifs subséquents. Grâce à une nouvelle méthode d’analyse des données de séquençage de nouvelle génération, nous montrons également qu’un type particulier d’instabilité génomique, demeuré peu caractérisé jusqu’à maintenant, constitue une des principales menaces au maintien de l’intégrité génomique des organites, et ce, tant chez Arabidopsis que chez l’humain. Ce type d’instabilité génomique est dénommé réarrangement de type U-turn et est vraisemblablement associé au processus de réplication. Par une approche génétique, nous démontrons que les protéines chloroplastiques WHY1, WHY3 et RECA1 empêchent la formation de ce type d’instabilité génomique, probablement en favorisant la stabilisation et le redémarrage des fourches de réplication bloquées. Une forte accumulation de réarrangements de type U-turn semble d’ailleurs être à l’origine d’un sévère trouble développemental chez le mutant why1why3reca1. Ceci soulève de nombreuses questions quant à l’implication de ce type d’instabilité génomique dans de nombreux troubles et pathologies possédant une composante mitochondriale.