Impacts des réarrangements génomiques chloroplastiques sur l'apparition des phénotypes de variégation chez Arabidopsis thaliana
Contribuinte(s) |
Brisson, Normand |
---|---|
Data(s) |
12/02/2016
31/12/1969
12/02/2016
15/10/2015
01/05/2015
|
Resumo |
Contrairement à la plupart des eucaryotes non-photosynthétiques, les végétaux doivent assurer la stabilité d’un génome additionnel contenu dans le plastide, un organite d’origine endosymbiotique. Malgré la taille modeste de ce génome et le faible nombre de gènes qu’il encode, celui-ci est absolument essentiel au processus de photosynthèse. Pourtant, même si ce génome est d’une importance cruciale pour le développement de la plante, les principales menaces à son intégrité, ainsi que les conséquences d’une déstabilisation généralisée de sa séquence d’ADN, demeurent largement inconnues. Dans l’objectif d’élucider les conséquences de l’instabilité génomique chloroplastique, nous avons utilisé le mutant why1why3polIb d’Arabidopsis thaliana, qui présente d’importants niveaux de réarrangements génomiques chloroplastiques, ainsi que la ciprofloxacine, un composé induisant des brisures double-brins dans l’ADN des organites. Ceci nous a permis d’établir qu’une quantité importante de réarrangements génomiques provoque une déstabilisation de la chaîne de transport des électrons photosynthétique et un grave stress oxydatif associé au processus de photosynthèse. Étonnamment, chez why1why3polIb, ces hautes concentrations d’espèces oxygénées réactives ne mènent ni à la perte de fonction des chloroplastes affectés, ni à la mort cellulaire des tissus. Bien au contraire, ce déséquilibre rédox semble être à l’origine d’une reprogrammation génique nucléaire permettant de faire face à ce stress photosynthétique et conférant une tolérance aux stress oxydatifs subséquents. Grâce à une nouvelle méthode d’analyse des données de séquençage de nouvelle génération, nous montrons également qu’un type particulier d’instabilité génomique, demeuré peu caractérisé jusqu’à maintenant, constitue une des principales menaces au maintien de l’intégrité génomique des organites, et ce, tant chez Arabidopsis que chez l’humain. Ce type d’instabilité génomique est dénommé réarrangement de type U-turn et est vraisemblablement associé au processus de réplication. Par une approche génétique, nous démontrons que les protéines chloroplastiques WHY1, WHY3 et RECA1 empêchent la formation de ce type d’instabilité génomique, probablement en favorisant la stabilisation et le redémarrage des fourches de réplication bloquées. Une forte accumulation de réarrangements de type U-turn semble d’ailleurs être à l’origine d’un sévère trouble développemental chez le mutant why1why3reca1. Ceci soulève de nombreuses questions quant à l’implication de ce type d’instabilité génomique dans de nombreux troubles et pathologies possédant une composante mitochondriale. In contrast to most non-photosynthetic eukaryotes, plants must ensure the stability of an additional genome contained within the plastid organelle. Despite the small size of the plastid genome and its low gene content, this genome is nevertheless absolutely essential for photosynthesis and plant energy metabolism. In spite of this, the main threats this genome encounters and their underlying consequences remain poorly understood. To evaluate the consequences of generalized plastid genome instability, we use the why1why3polIb Arabidopsis thaliana mutant line, which exhibits elevated levels of plastid genome rearrangements, and ciprofloxacin, a compound that induces double strand-breaks within organelle DNA. We demonstrated that high levels of plastid genome rearrangements lead to a decrease in photosynthetic electron transport chain efficiency and to a severe photosynthesis-associated oxidative stress. Surprisingly, these high levels of reactive oxygen species are neither associated to a loss of chloroplast function, nor to cell death. Instead, this redox imbalance seems to initiate a nuclear genetic expression remodelling that allows adaptation to this photosynthetic stress and confers tolerance to subsequent oxidative stresses. Using a novel approach for the analysis of next-generation sequencing data, we have also shown that a poorly characterized type of genomic instability constitutes one of the main threats to organelle genomic integrity, both in Arabidopsis and human. We demonstrate that this particular type of genomic instability, named U-turn-like DNA rearrangement, is most probably associated to errors during the replication process. Also, a genetic approach revealed that the chloroplast-localized proteins WHY1, WHY3 and RECA1 all act to repress this type of genomic instability, probably by stabilizing and stimulating the accurate restart of collapsed replication forks. A strong accumulation of U-turn-like rearrangements is notably associated to severe developmental defects in the why1why3reca1 mutant line. This raises the question of whether this type of genomic instability could be involved in the appearance of several mitochondria-associated pathologies. |
Identificador | |
Idioma(s) |
fr |
Palavras-Chave | #biologie végétale #chloroplaste #mitochondrie #ROS #Whirly #RecA #instabilité génomique #réplication #recombinaison #plant biology #chloroplast #mitochondria #genomic instability #replication #recombination #Biology - Genetics / Biologie - Génétique (UMI : 0369) |
Tipo |
Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |