1000 resultados para Aprenentatge per reforç (Aprenentatge automàtic)
Resumo:
Projecte de recerca elaborat a partir d’una estada al Robot Locomotion Group del Massachusetts Institute of Technology, Estats Units, entre març i agost del 2006. Es descriu la feina portada a terme en el camp de l'aprenentatge per reforç (RL), una metodologia molt utilitzada en aprenentatge artificial. En RL, un agent intenta maximitzar un valor escalar (càstig o premi) obtingut com a resultat de la seva interacció amb l'entorn. L'objectiu d'un sistema basat en RL és el de trobar una política d'actuació òptima que relaciona l'estat de l'entorn amb una acció determinada que maximitzi la suma de reforços futurs. El principal avantatge és que no utilitza cap base de dades conegudes, així que l'agent no rep informació sobre quina decisió triar, com succeeix en molts tipus d'aprenentatge, sinó que ha de triar per descobrir aquelles accions que tenen un valor més alt, sent molt adient en robòtica aplicada. Els principals desavantatges són uns temps de convergència sovint elevats i la manca de generalització quan tractem variables contínues. Principalment, el treball s’ha centrat en l'estudi de noves i més complexes metodologies basades en RL que combinessin dos tipus d'algorismes: els basats en funcions de valor i els representats únicament per una política d'actuació. Posteriorment s'analitzà la seva aplicabilitat en aplicacions robòtiques reals. En tots els estudis i les simulacions s’ha utilitzat un braç robòtic dissenyat i contruït al laboratori. El tipus de robot, anomenat Acrobot, és un banc de proves molt utilitzat en els camps de teoria de control i aprenentatge.
Resumo:
Estudi realitzat a partir d’una estada al Computer Science and Artificial Intelligence Lab, del Massachusetts Institute of Technology, entre 2006 i 2008. La recerca desenvolupada en aquest projecte se centra en mètodes d'aprenentatge automàtic per l'anàlisi sintàctica del llenguatge. Com a punt de partida, establim que la complexitat del llenguatge exigeix no només entendre els processos computacionals associats al llenguatge sinó també entendre com es pot aprendre automàticament el coneixement per a dur a terme aquests processos.
Resumo:
Les tècniques de clustering poden ajudar a reduir la supervisió en processos d'obtenció de patrons per a Extracció d'Informació. En aquest treball, que abarca un període de 4 anys de recerca, es comença per estudiar la representació de documents més adequada per a la tasca de clustering. Per tal d'evitar els biaixos dels mètodes individuals de clustering, es consideren mètodes de clustering conjunt. S'exploren diversos mètodes de combinació supervisada, i s'hi afegeixen estratègies automàtiques per a determinar el nombre de clusters de la combinació. També es consideren mecanismes per a obtenir clusterings conjunts ponderats, així com estratègies de combinació no supervisada. Finalment, els resultats del clustering s'utilitzen en un sistema d'adquisició de patrons per a substituir els elements de supervisió humana. Totes aquestes estratègies i mètodes s'avaluen en tasques de clustering de documents i adquisició de patrons usant dades reals. Es comprova que els mots com representació de documents superen altres models per a la tasca de clustering, així com que el clustering conjunt supera les limitacions dels clusterings individuals, i que les estratègies no supervisades d'adquisició de patrons obtenen resultats competitius respecte a les estratègies supervisades.
Resumo:
Aquest treball descriu una metodologia per classificar els verbs en català segons el seu comportament sintàctic. L’objectiu és adquirir un nombre reduït de classes bàsiques amb una precisió alta fent servir pocs recursos. Obtenir informació sobre classe sintàctica és un procés llarg i costós, però útil per a moltes tasques de PLN. Presentem com obtenir aquesta informació fent servir només un corpus amb anotació de categoria morfològica. Hem explorat tant tècniques supervisades com no supervisades. Primer presentem els experiments que fan servir un mètode supervisat per distingir automàticament entre verbs transitius i intransitius. El nostre sistema té una taxa d’error del 4,65%. Pel que fa als mètodes no supervisats (clustering), presentem dos experiments. El primer pretén classificar els verbs en transitius, intransitius i verbs que alternen amb la partícula se. El segon experiment té per objectiu fer una subclassificació entre intransitius purs i preposicional. Els resultats són uns coeficients-F de 0.84 i 0.88, respectivament.
Resumo:
Es tracta d'un projecte que proposa una aplicació per al calibratge automàtic de models P-sistema. Per a fer-ho primer es farà un estudi sobre els models P-sistema i el procediment seguit pels investigadors per desenvolupar aquest tipus de models. Es desenvoluparà una primera solució sèrie per al problema, i s'analitzaran els seus punts febles. Seguidament es proposarà una versió paral·lela que millori significativament el temps d'execució, tot mantenint una alta eficiència i escalabilitat.
Resumo:
Entrar a una pàgina web de continguts i trobar a l'instant allò que et ve de gust llegir, escoltar o veure en aquell precís instant és un dels somnis de molts internautes. Aquest projecte ha tingut com a objectiu dissenyar un prototip de sistema d'aprenentatge automàtic que va en aquesta línia, dins les possibilitats d'un projecte de final de carrera d'Enginyeria en Informàtica. El programa desenvolupat treballa sobre una mostra de documents classificats en una secció principal i definits per paraules clau. Està pensat per ser vàlid per a qualsevol repositori de dades però s'ha aplicat a un cas concret, l'aprenentatge de gustos sobre notícies del diari britànic 'The Guardian'. L'algoritme té un perfil ideal que modela el cervell d'un lector i un perfil evolutiu, que comença de zero i va aprenent a mesura que l'usuari va consumint notícies. L'aprenentatge s'ha aconseguit fent una simulació d'aquestes tries en dos corpus de notícies d'uns 6.000 articles cadascun. En cada iteració, l'algorisme té en compte un petit grup notícies, a les quals s'assignen dues valoracions, una d'acord amb el perfil ideal i una altra segons el perfil evolutiu. La diferència entre les dues seleccions és la que ens dóna informació per a l'aprenentatge, que s'ha abordat amb dues estratègies. L'aprenentatge online fa una petita variació al perfil evolutiu després de cada tria, mentre que l'offline s'espera a tenir més dades per trobar patrons de conducta i poder fer modificacions més de més magnitud. Després de diverses proves, s'ha comprovat que s'aconsegueix reduir la distància entre valoracions de les seccions principals i tags, comparant el perfil ideal i l'evolutiu abans i després de l'execució de l'algorisme d'aprenentatge.
Resumo:
Memòria elaborada a partir d’una estada al projecte Proteus de la New York University entre abril i juny del 2007. Les tècniques de clustering poden ajudar a reduir la supervisió en processos d’obtenció de patrons per a Extracció d’Informació. Tanmateix, és necessari disposar d’algorismes adequats a documents, i aquests algorismes requereixen mesures adequades de similitud entre patrons. Els kernels poden oferir una solució a aquests problemes, però l’aprenentatge no supervisat requereix d’estrat`egies m´es astutes que l’aprenentatge supervisat per a incorporar major quantitat d’informació. En aquesta memòria, fruit de la meva estada de mes d’Abril al de Juny de 2007 al projecte. Proteus de la New York University, es proposen i avaluen diversos kernels sobre patrons. Ini- cialment s’estudien kernels amb una família de patrons restringits, i a continuació s’apliquen kernels ja usats en tasques supervisades d’Extracció d’Informació. Degut a la degradació del rendiment que experimenta el clustering a l’afegir informació irrellevant, els kernels se simpli- fiquen i es busquen estratègies per a incorporar-hi semàntica de forma selectiva. Finalment, s’estudia quin efecte té aplicar clustering sobre el coneixement semàntic com a pas previ al clustering de patrons. Les diverses estratègies s’avaluen en tasques de clustering de documents i patrons usant dades reals.
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
Aquesta tesi proposa l'ús d'un seguit de tècniques pel control a alt nivell d'un robot autònom i també per l'aprenentatge automàtic de comportaments. L'objectiu principal de la tesis fou el de dotar d'intel·ligència als robots autònoms que han d'acomplir unes missions determinades en entorns desconeguts i no estructurats. Una de les premisses tingudes en compte en tots els passos d'aquesta tesis va ser la selecció d'aquelles tècniques que poguessin ésser aplicades en temps real, i demostrar-ne el seu funcionament amb experiments reals. El camp d'aplicació de tots els experiments es la robòtica submarina. En una primera part, la tesis es centra en el disseny d'una arquitectura de control que ha de permetre l'assoliment d'una missió prèviament definida. En particular, la tesis proposa l'ús de les arquitectures de control basades en comportaments per a l'assoliment de cada una de les tasques que composen la totalitat de la missió. Una arquitectura d'aquest tipus està formada per un conjunt independent de comportaments, els quals representen diferents intencions del robot (ex.: "anar a una posició", "evitar obstacles",...). Es presenta una recerca bibliogràfica sobre aquest camp i alhora es mostren els resultats d'aplicar quatre de les arquitectures basades en comportaments més representatives a una tasca concreta. De l'anàlisi dels resultats se'n deriva que un dels factors que més influeixen en el rendiment d'aquestes arquitectures, és la metodologia emprada per coordinar les respostes dels comportaments. Per una banda, la coordinació competitiva és aquella en que només un dels comportaments controla el robot. Per altra banda, en la coordinació cooperativa el control del robot és realitza a partir d'una fusió de totes les respostes dels comportaments actius. La tesis, proposa un esquema híbrid d'arquitectura capaç de beneficiar-se dels principals avantatges d'ambdues metodologies. En una segona part, la tesis proposa la utilització de l'aprenentatge per reforç per aprendre l'estructura interna dels comportaments. Aquest tipus d'aprenentatge és adequat per entorns desconeguts i el procés d'aprenentatge es realitza al mateix temps que el robot està explorant l'entorn. La tesis presenta també un estat de l'art d'aquest camp, en el que es detallen els principals problemes que apareixen en utilitzar els algoritmes d'aprenentatge per reforç en aplicacions reals, com la robòtica. El problema de la generalització és un dels que més influeix i consisteix en permetre l'ús de variables continues sense augmentar substancialment el temps de convergència. Després de descriure breument les principals metodologies per generalitzar, la tesis proposa l'ús d'una xarxa neural combinada amb l'algoritme d'aprenentatge per reforç Q_learning. Aquesta combinació proporciona una gran capacitat de generalització i una molt bona disposició per aprendre en tasques de robòtica amb exigències de temps real. No obstant, les xarxes neurals són aproximadors de funcions no-locals, el que significa que en treballar amb un conjunt de dades no homogeni es produeix una interferència: aprendre en un subconjunt de l'espai significa desaprendre en la resta de l'espai. El problema de la interferència afecta de manera directa en robòtica, ja que l'exploració de l'espai es realitza sempre localment. L'algoritme proposat en la tesi té en compte aquest problema i manté una base de dades representativa de totes les zones explorades. Així doncs, totes les mostres de la base de dades s'utilitzen per actualitzar la xarxa neural, i per tant, l'aprenentatge és homogeni. Finalment, la tesi presenta els resultats obtinguts amb la arquitectura de control basada en comportaments i l'algoritme d'aprenentatge per reforç. Els experiments es realitzen amb el robot URIS, desenvolupat a la Universitat de Girona, i el comportament après és el seguiment d'un objecte mitjançant visió per computador. La tesi detalla tots els dispositius desenvolupats pels experiments així com les característiques del propi robot submarí. Els resultats obtinguts demostren la idoneïtat de les propostes en permetre l'aprenentatge del comportament en temps real. En un segon apartat de resultats es demostra la capacitat de generalització de l'algoritme d'aprenentatge mitjançant el "benchmark" del "cotxe i la muntanya". Els resultats obtinguts en aquest problema milloren els resultats d'altres metodologies, demostrant la millor capacitat de generalització de les xarxes neurals.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la National University of Singapore Singapur, entre juliol i octubre del 2007. Donada l'explosió de la música a l'internet i la ràpida expansió de les col•leccions de música digital, un repte clau en l'àrea de la informació musical és el desenvolupament de sistemes de processament musical eficients i confiables. L'objectiu de la investigació proposada ha estat treballar en diferents aspectes de l'extracció, modelatge i processat del contingut musical. En particular, s’ha treballat en l'extracció, l'anàlisi i la manipulació de descriptors d'àudio de baix nivell, el modelatge de processos musicals, l'estudi i desenvolupament de tècniques d'aprenentatge automàtic per a processar àudio, i la identificació i extracció d'atributs musicals d'alt nivell. S’han revisat i millorat alguns components d'anàlisis d'àudio i revisat components per a l'extracció de descriptors inter-nota i intra-nota en enregistraments monofónics d'àudio. S’ha aplicat treball previ en Tempo a la formalització de diferents tasques musicals. Finalment, s’ha investigat el processat d'alt nivell de música basandonos en el seu contingut. Com exemple d'això, s’ha investigat com músics professionals expressen i comuniquen la seva interpretació del contingut musical i emocional de peces musicals, i hem usat aquesta informació per a identificar automàticament intèrprets. S’han estudiat les desviacions en paràmetres com to, temps, amplitud i timbre a nivell inter-nota i intra-nota.
Mejora diagnóstica de hepatopatías de afectación difusa mediante técnicas de inteligencia artificial
Resumo:
The automatic diagnostic discrimination is an application of artificial intelligence techniques that can solve clinical cases based on imaging. Diffuse liver diseases are diseases of wide prominence in the population and insidious course, yet early in its progression. Early and effective diagnosis is necessary because many of these diseases progress to cirrhosis and liver cancer. The usual technique of choice for accurate diagnosis is liver biopsy, an invasive and not without incompatibilities one. It is proposed in this project an alternative non-invasive and free of contraindications method based on liver ultrasonography. The images are digitized and then analyzed using statistical techniques and analysis of texture. The results are validated from the pathology report. Finally, we apply artificial intelligence techniques as Fuzzy k-Means or Support Vector Machines and compare its significance to the analysis Statistics and the report of the clinician. The results show that this technique is significantly valid and a promising alternative as a noninvasive diagnostic chronic liver disease from diffuse involvement. Artificial Intelligence classifying techniques significantly improve the diagnosing discrimination compared to other statistics.
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV