1000 resultados para Antinociception effect
Resumo:
Aim of the study: The aerial parts of Baccharis dracunculifolia D.C., popularly known as ""alecrim do campo"" are used in folk medicine as anti-inflammatory. The aim of the present study was to evaluate the anti-inflammatory and antinociceptive activities of the crude hydroalcoholic extract obtained from leaves of Baccharis dracunculifolia (BdE), which have not been reported. Matetials and methods: BdE was analyzed by HPLC and in vivo evaluated (doses ranging from 50 to 400 mg/kg, p.o.) by using the acetic acid-induced abdominal constrictions, paw oedema induced by carrageenan or histamine, overt nociception models using capsaicin, glutamate or phorbol myristate acetate (PMA), formalin-induced nociception and mechanical hypernociception induced by carrageenan or complete Freund adjuvant (CFA). As positive controls it was used paracetamol in both acetic acid and formalin tests; dipyrone in capsaicin, glutamate and PMA-induced nociception; indomethacin in CFA and carrageenan-induced hypernociception models. In addition, the in vitro effects of BdE on COX-2 activity and on the activation of NF-kappa B were also evaluated. Results: BdE (50-400 mg/kg, p.o.) significantly diminished the abdominal constrictions induced by acetic acid, glutamate and CFA. Furthermore, BdE also inhibited the nociceptive responses in both phases of formalin-induced nociception. BdE, administered orally, also produced a long-lasting anti-hypernociceptive effect in the acute model of inflammatory pain induced by carrageenan. It was also observed the inhibition of COX-2 activity by BdE. Conclusion: In summary, the data reported in this work confirmed the traditional anti-inflammatory indications of Baccharis dracunculifolia leaves and provided biological evidences that Baccharis dracunculifolia, like Brazilian green propolis, possess antinociceptive and anti-inflammatory activities. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
There is extensive evidence that acute stress induces an analgesic response in rats. On the other hand, repeatedly stressed animals may present the opposite effect, i.e., hyperalgesia. Furthermore, exposure to novelty is known to induce antinociception. The effects of repeated restraint stress on nociception after exposure to novelty, as measured by the tail-flick latency (TFL), were studied in adult male rats. The animals were stressed by restraint 1 h daily, 5 days a week for 40 days. The control group was not submitted to restraint. Nociception was assessed with a tail-flick apparatus. After being familiarized with the TFL apparatus, each group was subdivided into two other groups, i.e., with or without novelty. Animals were subjected to the TFL measurement twice. For the animals exposed to novelty, the first TFL measurement was made immediately before, and the second 2 min after a 2-min exposure to a new environment. While the control group presented an increased TFL after exposure to a novel environment, chronically stressed animals did not show this effect. These results suggest that repeated restraint stress induces an alteration in the nociceptive response, perhaps as a result of an alteration in endogenous opioids in these animals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have previously demonstrated that blockade of β-adrenoreceptors (β-AR) located in the temporomandibular joint (TMJ) of rats suppresses formalin-induced TMJ nociceptive behaviour in both male and female rats, but female rats are more responsive. In this study, we investigated whether gonadal hormones modulate the responsiveness to local β-blocker-induced antinociception in the TMJ of rats. Co-administration of each of the selective β1 (atenolol), β2 (ICI 118.551) and β3 (SR59230A)-AR antagonists with equi-nociceptive concentrations of formalin in the TMJ of intact, gonadectomized and hormone-treated gonadectomized male and female rats. Atenolol, ICI 118.551 and SR59230A significantly reduced formalin-induced TMJ nociception in a dose response fashion in all groups tested. However, a lower dose of each β-AR antagonist was sufficient to significantly reduce nociceptive responses in gonadectomized but not in intact and testosterone-treated gonadectomized male rats. In the female groups, a lower dose of β1 -AR antagonist was sufficient to significantly reduce nociceptive responses in gonadectomized but not in intact or gonadectomized rats treated with progesterone or a high dose of oestradiol; a lower dose of β2 -AR antagonist was sufficient to significantly reduce nociceptive responses in gonadectomized but not in intact and gonadectomized rats treated with low or high dose of oestradiol. Gonadal hormones may reduce the responsiveness to local β-blocker-induced antinociception in the TMJ of male and female rats. However, their effect depends upon their plasma level, the subtype of β-AR and the dose of β-blockers used.
Resumo:
A role for the occipital or retrosplenial cortex in nociceptive processing has not been demonstrated yet, but connections from these cortices to brain structures involved in descending pain-inhibitory mechanisms were already demonstrated. This study demonstrated that the electrical stimulation of the occipital or retrosplenial cortex produces antinociception in the rat tail-flick and formalin tests. Bilateral lesions of the dorsolateral funiculus abolished the effect of cortical stimulation in the tail-flick test. Injection of glutamate into the same targets was also antinociceptive in the tail-flick test. No rats stimulated in the occipital or retrosplenial cortex showed any change in motor performance on the Rota-rod test, or had epileptiform changes in the EEG recording during or up to 3 hours after stimulation. The antinociception induced by occipital cortex stimulation persisted after neural block of the retrosplenial cortex. The effect of retrosplenial cortex stimulation also persisted after neural block of the occipital cortex. We conclude that stimulation of the occipital or retrosplenial cortex in rats leads to antinociception activating distinct descending pain-inhibitory mechanisms, and this is unlikely to result from a reduced motor performance or a postictal phenomenon. Perspective: This study presents evidence that stimulation of the retrosplenial or occipital cortex produces antinociception in rat models of acute pain. These findings enhance our understanding of the role of the cerebral cortex in control of pain. (C) 2010 by the American Pain Society
Resumo:
Although morphine-6-glucuronide (M6G) has been shown to be analgesically active, the relative involvement of spinal and supraspinal structures in mediating M6G's pain-relieving effects following central and systemic administration to rats is unclear. As the tail flick and hotplate latency tests are reported to quantify antinociception mediated primarily by spinal and supraspinal mechanisms respectively, these methods were used to determine the comparative apparent levels of antinociception (expressed as percentage maximum possible effect, % MPE) achieved after M6G or morphine administration. Following i.v. or i.p. M6G (1.9-5.4 mu mol) dosing or i.p. morphine (10 mu mol) dosing, high levels of antinociception (>50% MPE) were achieved using the tail flick test whereas base-line levels of antinociception were observed 30 sec later in the same rats using the hotplate test. By contrast, antinociception evoked by i.v. morphine (10 mu mol) exceeded 50% MPE using both the hotplate and tail flick tests although the apparent potency was approximately 2.5 times greater using the tail flick test. After i.c.v. dosing, M6G (0.22-3.3 nmol) was significantly (P < .05) more potent when assessed using the tail flick compared with the hotplate test. Taken together, these data strongly indicate that following central and systemic administration, M6G's antinociceptive effects are mediated primarily by spinal structures whereas both spinal and supraspinal mechanisms contribute to systemic morphine's antinociceptive effects.
Resumo:
Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Pharmacological studies have been focused on the involvement of different neural pathways in the organization of antinociception that follows tonic-clonic seizures, including 5-hydroxytryptamine (5-HT)-, norepinephrine-, acetylcholine- and endogenous opioid peptide-mediated mechanisms, giving rise to more in-depth comprehension of this interesting post-ictal antinociceptive phenomenon. The present work investigated the involvement of 5-HT(1A/1B), 5-HT(6), and 5-HT(7) serotonergic receptors through peripheral pretreatment with methiothepin at doses of 0.5, 1.0, 2.0 and 3.0 mg/kg in the organization of the post-ictal antinociception elicited by pharmacologically (with pentylenetetrazole at 64 mg/kg)-induced tonic-clonic seizures. Methiothepin at 1.0 mg/kg blocked the post-ictal antinociception recorded after the end of seizures, whereas doses of 2.0 and 3.0 mg/kg potentiated the post-ictal antinociception. The nociceptive thresholds were kept higher than those of the control group. However, when the same 5-hydroxytryptamine receptors antagonist was microinjected (at 1.0, 3.0 and 5.0 mu g/0.2 mu L) in the dorsal raphe nucleus, a mesencephalic structure rich in serotonergic neurons and 5-HT receptors, the post-ictal hypo-analgesia was consistently antagonized. The present findings suggest a dual effect of methiothepin, characterized by a disinhibitory effect on the post-ictal antinociception when peripherally administered (possibly due to an antagonism of pre-synaptic 5-HT(1A) serotonergic autoreceptors in the pain endogenous inhibitory system) and an inhibitory effect (possibly due to a DRN post-synaptic 5-HT(1B), 5-HT(6), and 5-HT(7) serotonergic receptors blockade) when centrally administered. The present data also Suggest that serotonin-mediated mechanisms of the dorsal raphe nucleus exert a key-role in the modulation of the post-ictal antinociception. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This study assessed the effect of the agonist 15d-PGJ(2) administered into the rat temporomandibular joint (TMJ) on nociceptive behavioral and the anti-inflammatory potential of this prostaglandin on TMJ. It was observed that 15-deoxy-(Delta 12,14)-prostaglandin J(2) (15d-PGJ(2)) significantly reduced formalin-induced nociceptive behavior in a dose dependent manner, however injection of 15d-PGJ(2) into the contralateral TMJ failed to reduce such effects. This antinociceptive effect is dependent on peroxisome proliferator-activated receptors-gamma (PPAR-gamma) since pre-treatment with GW9662 (PPAR-gamma receptor antagonist) blocked the antinociceptive effect of 15d-PGJ(2) in the TMJ. In addition, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone suggesting the involvement of peripheral opioids in the process. Confirming this hypothesis pre-treatment with kappa, delta, but not mu receptor antagonists significantly reduced the antinociceptive effect of 15d-PGJ(2) in the TMJ. Similarly to opioid agonists, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide (NO)/guanilate cyclase (cGMP)/ATP-sensitive potassium channel blocker(K(ATP)(+)) channel pathway since it was prevented by the pre-treatment with the inhibitors of nitric oxide synthase (NOS; aminoguanidine), cGMP (ODQ), or the K(ATP)(+) (glibenclamide). In addition, 15d-PGJ(2) (100 ng/TMJ) inhibits 5-HT-induced TMJ hypernociception. Besides, TMJ treated with 15d-PGJ(2) showed lower vascular permeability, assessed by Evan`s Blue extravasation, and also lower neutrophil migration induced by carrageenan administration. Taken together, these results demonstrate that 15d-PGJ(2) has a potential peripheral antinociceptive and anti-inflammatory effect in the TMJ via PPAR-gamma activation. The results also suggest that 15d-PGJ(2) induced-peripheral antinociceptive response in the TMJ is mediated by kappa/delta opioid receptors by the activation of the intracellular L-arginine/NO/cGMP/K(ATP)(+) channel pathway. The pharmacological properties of the peripheral administration of 15d-PGJ(2) highlight the potential use of this PPAR-gamma agonist on TMJ inflammatory pain conditions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
It has been shown previously that the endogenous opioid system may be involved in the behavioral effects of nicotine. In the present study, the participation of endogenous enkephalins on nicotine responses has been investigated by using preproenkephalin knock-out mice. Acute nicotine-induced hypolocomotion remained unaffected in these mice. In contrast, antinociception elicited in the tail-immersion and hot-plate tests by acute nicotine administration was reduced in mutant animals. The rewarding properties of nicotine were then investigated using the place-conditioning paradigm. Nicotine induced a conditioned place preference in wild-type animals, but this effect was absent in knock-out mice. Accordingly, in vivo microdialysis studies revealed that the enhancement in dopamine extracellular levels in the nucleus accumbens induced by nicotine was also reduced in preproenkephalin-deficient mice. Finally, the somatic expression of the nicotine withdrawal syndrome precipitated in nicotine-dependent mice by mecamylamine was significantly attenuated in mutant animals. In summary, the present results indicate that endogenous opioid peptides derived from preproenkephalin are involved in the antinociceptive and rewarding properties of nicotine and participate in the expression of physical nicotine dependence.
Resumo:
The analgesic efficacy of cholinergic agonists and anticholinesterase agents has been widely recognized. The analgesic effect obtained by activating cholinergic mechanisms, however, seems to depend on the experimental pain model utilized for its evaluation. The antinociceptive effect of intraspinal neostigmine was examined in rats submitted concurrently to the tail flick and formalin tests. Neostigmine (8.25 and 16.5 nmol) produced a dose-dependent antinociceptive effect in the tail flick test (a model of phasic pain) and reduced the first phase (phasic pain) of the animal response to formalin also in a dose-dependent manner. The second phase (tonic pain) of the response to formalin, however, was slightly reduced after a longer period of time only by the higher dose of the anticholinesterase. The effect of neostigmine was not significantly different when the drug was injected into rats submitted exclusively to the tail flick test. The second phase of the animal response to formalin was slightly reduced by neostigmine (8.25 nmol) and strongly inhibited by the higher dose of the anticholinesterase when injection was made after the first phase. We conclude that phasic and tonic pain can both be controlled by high doses of neostigmine. In addition, we show that inhibition by a lower dose of neostigmine of the formalin-induced phasic pain did not prevent the subsequent occurrence of tonic pain produced by the irritant
Resumo:
The antinociceptive effect of six novel synthetic pyrazolines (3-ethoxymethyl-5-ethoxycarbonyl-1H-pyrazole (Pz 1) and its corresponding 1-substituted methyl (Pz 2) and phenyl (Pz 3) analogues, and 3-(1-ethoxyethyl)-5-ethoxycarbonyl-1H-pyrazole (Pz 4) and its corresponding 1-substituted methyl (Pz 5) and phenyl (Pz 6) analogues) was evaluated by the tail immersion test in adult male albino mice. The animals (N = 11-12 in each group) received vehicle (5% Tween 80, 10 ml/kg, sc) or 1.5 mmol/kg of each of the pyrazolines (Pz 1-Pz 6), sc. Fifteen, thirty and sixty minutes after drug administration, the mice were subjected to the tail immersion test. Thirty minutes after drug administration Pz 2 and Pz 3 increased tail withdrawal latency (vehicle = 3.4 ± 0.2; Pz 2 = 5.2 ± 0.4; Pz 3 = 5.9 ± 0.4 s; mean ± SEM), whereas the other pyrazolines did not present antinociceptive activity. Dose-effect curves (0.15 to 1.5 mmol/kg) were constructed for the bioactive pyrazolines. Pz 2 (1.5 mmol/kg, sc) impaired motor coordination in the rotarod and increased immobility in the open-field test. Pz 3 did not alter rotarod performance and spontaneous locomotion, but increased immobility in the open field at the dose of 1.5 mmol/kg. The involvement of opioid mechanisms in the pyrazoline-induced antinociception was investigated by pretreating the animals with naloxone (2.75 µmol/kg, sc). Naloxone prevented Pz 3- but not Pz 2-induced antinociception. Moreover, naloxone pretreatment did not alter Pz 3-induced immobility. We conclude that Pz 3-induced antinociception involves opioid mechanisms but this is not the case for Pz 2.
Resumo:
Several studies have demonstrated the involvement of the central nucleus of the amygdala (CEA) in the modulation of defensive behavior and in antinociceptive regulation. In a previous study, we demonstrated the existence of a cholinergic-opioidergic interaction in the CEA, modulating the defensive response of tonic immobility in guinea pigs. In the present study, we investigated a similar interaction in the CEA, but now involved in the regulation of the nociceptive response. Microinjection of carbachol (2.7 nmol) and morphine (2.2 nmol) into the CEA promoted antinociception up to 45 min after microinjection in guinea pigs as determined by a decrease in the vocalization index in the vocalization test. This test consists of the application of a peripheral noxious stimulus (electric shock into the subcutaneous region of the thigh) that provokes the emission of a vocalization response by the animal. Furthermore, the present results demonstrated that the antinociceptive effect of carbachol (2.7 nmol; N = 10) was blocked by previous administration of atropine (0.7 nmol; N = 7) or naloxone (1.3 nmol; N = 7) into the same site. In addition, the decrease in the vocalization index induced by the microinjection of morphine (2.2 nmol; N = 9) into the CEA was prevented by pretreatment with naloxone (1.3 nmol; N = 11). All sites of injection were confirmed by histology. These results indicate the involvement of the cholinergic and opioidergic systems of the CEA in the modulation of antinociception in guinea pigs. In addition, the present study suggests that cholinergic transmission may activate the release of endorphins/enkephalins from interneurons of the CEA, resulting in antinociception.
Resumo:
We examined the effect of several K+ channel blockers such as glibenclamide, tolbutamide, charybdotoxin (ChTX), apamin, tetraethylammonium chloride (TEA), 4-aminopyridine (4-AP), and cesium on the ability of fentanyl, a clinically used selective µ-opioid receptor agonist, to promote peripheral antinociception. Antinociception was measured by the paw pressure test in male Wistar rats weighing 180-250 g (N = 5 animals per group). Carrageenan (250 µg/paw) decreased the threshold of responsiveness to noxious pressure (delta = 188.1 ± 5.3 g). This mechanical hyperalgesia was reduced by fentanyl (0.5, 1.5 and 3 µg/paw) in a peripherally mediated and dose-dependent fashion (17.3, 45.3 and 62.6%, respectively). The selective blockers of ATP-sensitive K+ channels glibenclamide (40, 80 and 160 µg/paw) and tolbutamide (80, 160 and 240 µg/paw) dose dependently antagonized the antinociception induced by fentanyl (1.5 µg/paw). In contrast, the effect of fentanyl was unaffected by the large conductance Ca2+-activated K+ channel blocker ChTX (2 µg/paw), the small conductance Ca2+-activated K+ channel blocker apamin (10 µg/paw), or the non-specific K+ channel blocker TEA (150 µg/paw), 4-AP (50 µg/paw), and cesium (250 µg/paw). These results extend previously reported data on the peripheral analgesic effect of morphine and fentanyl, suggesting for the first time that the peripheral µ-opioid receptor-mediated antinociceptive effect of fentanyl depends on activation of ATP-sensitive, but not other, K+ channels.
Resumo:
The present study investigates the antinociceptive effect of the pyrazolyl-thiazole derivative 2-(5-trichloromethyl-5-hydroxy-3-phenyl-4,5-dihydro-1 H-pyrazol-1-yl)-4-(4-bromophenyl)-5-methylthiazole (B50) in mice. Male albino Swiss mice (30-40 g) were used in the acetic acid-induced abdominal writhes and tail-immersion tests. B50 caused dose-dependent antinociception (8, 23 and 80 µmol/kg, sc) in the acetic acid writhing assay (number of writhes: vehicle: 27.69 ± 6.15; B50 (8 µmol/kg): 16.92 ± 3.84; B50 (23 µmol/kg): 13.85 ± 3.84; B50 (80 µmol/kg): 9.54 ± 3.08; data are reported as means ± SEM for 9 animals per group). On the other hand, B50 did not cause antinociception in the tail immersion assay. Naloxone (2.75 µmol/kg, sc) prevented B50-induced antinociception (number of writhes: vehicle-saline: 31.11 ± 3.15; vehicle-naloxone: 27.41 ± 3.70; B50 (80 µmol/kg)-saline: 8.70 ± 3.33; B50 (80 µmol/kg)-naloxone: 31.84 ± 4.26; morphine-saline: 2.04 ± 3.52; morphine-naloxone: 21.11 ± 4.26; 8-9 animals per group). The removal of the methyl group of the thiazole ring of B50 or substitution of the bromo substituent with the methyl at position 4 of the phenyl group, which is attached to the thiazole ring of B50, resulted in loss of activity, suggesting that these substituents are important for antinociceptive activity. B50 had no effect on spontaneous locomotion or rotarod performance, indicating that the antinociceptive effect of B50 is not related to nonspecific motor effects. The antinociceptive profile of B50 seems to be closer to nonsteroidal anti-inflammatory drugs than to classic opioid agents, since it had no analgesic effect in a thermally motivated test.