981 resultados para Antimicrobial properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO nanostructures were deposited on flexible polymer sheet and cotton fabrics at room temperature by activated reactive evaporation. Room-temperature photoluminescence spectrum of ZnO nanostructured film exhibited a week intrinsic UV emission and a strong broad yellow-orange visible emission. TEM and HRTEM studies show that the grown nanostructures are crystalline in nature and their growth direction was indentified to be along [002]. ZnO nanostructures grown on the copper-coated flexible polymer sheets exhibited stable field-emissio characteristics with a threshold voltage of 2.74 V/mu m (250 mu A) and a very large field enhancement factor (beta) of 23,213. Cotton fabric coated with ZnO nanostructures show an excellent antimicrobial activity against Staphylococcus aureus bacteria (Gram positive), and similar to 73% reduction in the bacterial population is achieved compared to uncoated fabrics after 4 h in viability. Using a shadow mask technique, we also selectively deposited the nanostructures at room temperature on polymer substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prepared thin films composed of pure TiO2 or TiO2 with an Fe additive (at concentrations of 0.2-0.8 wt%) via a simple and cost effective sol gel process, and tested their antifungal properties (against Candida albicans (MTCC-1637), Candida tropicalis (MTCC-184), Candida parapsilosis (MTCC-2509), and Candida glabrata (MTCC-3019) and antibacterial properties (against Staphylococcus faecalis (NCIM-2604) Staphylococcus epidermidis (NCIM-2493), Staphylococcus aureus (NCIL-2122), and Bacillus subtilis (NCIM-2549)). The films were deposited on glass and Si substrates and subjected to annealing at 400 degrees C for 3 h in ambient air. The film structural and morphological properties were investigated by X-ray photoelectron spectroscopy profilometry and scanning electron microscopy, respectively. Antifungal and antibacterial tests were conducted using the drop test method. Among the species examined, Candida albicans (MTCC-1637), and Staphylococcus aureus (NCIL-2122) showed complete colony formation inhibition after exposure for 4 h for the TiO2 loaded with 0.8 wt% Fe thin films. These results indicate that increasing the Fe concentration increased the antimicrobial activity, with complete inhibition of colony formation after 4 h exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optically transparent, crack-free, mesoporous anatase TiO2 thin films were fabricated. The Ag/TiO2 composite films were prepared by incorporating Ag in the pores of TiO2 films with an impregnation method via photoreduction. The as-prepared composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectronic spectra (XPS) and N-2 adsorption. The release behavior of silver ions in the mesoporous composite film was also studied. Moreover, the antimicrobial behaviors of the mesoporous film were also investigated by confocal laser scanning microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

11 Å tobermorite, Ca5Si6O16(OH)2 · 4H2O, is a layer lattice ion exchange mineral whose potential as a carrier for Ag+ and Zn2+ ions in antimicrobial, bioactive formulations has not yet been explored. In view of this, the in vitro bioactivity of Ag+- and Zn2+-exchanged 11 Å tobermorites and their bactericidal action against S. aureus and P.aeruginosa are reported. The in vitro bioactivity of the synthetic unsubstituted tobermorite phase was confirmed by the formation of bone-like hydroxycarbonate apatite (HCA) on its surface within 48 h of contact with simulated body fluid. The substitution of labile Ag+ ions into the tobermorite lattice delayed the onset of HCA-formation to 72 h; whereas, the Zn2+-substituted phase failed to elicit an HCA-layer within 14 days. Both Ag+- and Zn2+-exchanged tobermorite phases were found to exhibit marked antimicrobial action against S. aureus and P.aeruginosa, two common pathogens in biomaterial-centred infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ag+- and Zn2+-exchanged zeolites zeolites and clays have been used as coatings and in composites to confer broad-spectrum antimicrobial properties on a range of technical and biomedical materials. 11 angstrom tobermorite is a bioactive layer lattice ion exchanger whose potential as a carrier for Ag+ and Zn2+ ions in antimicrobial formulations has not yet been explored. In view of this, batch Ag+- and Zn2+-exchange kinetics of two structurally distinct synthetic 11 angstrom tobermorites and their subsequent bactericidal action against Staphylococcus aureus and Pseudomonas aeruginosa are reported. During the exchange reactions, Ag+ ions were found to replace labile interlayer cations; whereas, Zn2+ ions also displaced structural Ca2+ ions from the tobermorite lattice. In spite of these different mechanisms, a simple pseudo-second-order model provided a suitable description of both exchange processes (R-2 >= 0.996). The Ag+- and Zn2+-exchanged tobermorite phases exhibited marked bacteriostatic effects against both bacteria, and accordingly, their potential for use as antimicrobial materials for in situ bone tissue regeneration is discussed. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe, for the first time, the microbial characterisation of hydrogel-forming polymeric microneedle arrays and the potential for passage of microorganisms into skin following microneedle penetration. Uniquely, we also present insights into the storage stability of these hydroscopic formulations, from physical and microbiological viewpoints, and examine clinical performance and safety in human volunteers. Experiments employing excised porcine skin and radiolabelled microorganisms showed that microorganisms can penetrate skin beyond the stratum corneum following microneedle puncture. Indeed, the numbers of microorganisms crossing the stratum corneum following microneedle puncture were greater than 105 cfu in each case. However, no microorganisms crossed the epidermal skin. When using a 21G hypodermic needle, more than 104 microorganisms penetrated into the viable tissue and 106 cfu of Candida albicans and Staphylococcus epidermidis completely crossed the epidermal skin in 24 h. The hydrogel-forming materials contained no microorganisms following de-moulding and exhibited no microbial growth during storage, while also maintaining their mechanical strength, apart from when stored at relative humidities of 86%. No microbial penetration through the swelling microneedles was detectable, while human volunteer studies confirmed that skin or systemic infection is highly unlikely when polymeric microneedles are used for transdermal drug delivery. Since no pharmacopoeial standards currently exist for microneedle-based products, the exact requirements for a proprietary product based on hydrogel-forming microneedles are at present unclear. However, we are currently working towards a comprehensive specification set for this microneedle system that may inform future developments in this regard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Epididymal protease inhibitor (eppin) is a dual motif protein belonging to the whey acidic protein (WAP) family. Although expressed in numerous different tissues, to date, its functional characterisation is limited. It has been shown to exhibit antibacterial activity against Gram-negative bacteria (Escherichia coli) and antiprotease activity against some proteases of the serine protease family. We are interested in determining the role of eppin in innate immune defence. Objectives: This study aims to determine eppin's potential function in the innate immune response in the oral cavity by investigating the antimicrobial activity of eppin against relevant oral pathogens. Methods: Eppin was recombinantly expressed in E. coli cells and purified by immobilised metal affinity chromatography (IMAC). The antimicrobial effects of the protein were then assessed against two oral pathogens, Fusobacterium nucleatum and Candida albicans, using a double layer radial diffusion assay. Results: Eppin displayed antimicrobial activities against both oral pathogens tested and these activities were shown to be comparable to the well characterised antimicrobial peptide, LL-37. The antifungal effects of eppin were shown to be more potent than those of the human cathelicidin, LL-37. Conclusions: Eppin has been shown to possess both antibacterial and antifungal properties against oral pathogens, suggesting an important role for this protein in the innate immune response in the oral cavity. This study furthers our knowledge of the physiological role exerted by eppin and its possible role in the modulation of chronic diseases such as periodontitis and oral candidiasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites with antimicrobial activity are of great interest nowadays and the development of titanium dioxide with these functional properties presents interest in academic and industrial sectors.An approach to develop PE composite containing silver microparticles to have an antimicrobial effect is presented. To obtain such antimicrobial composites, LDPE/EVA were processed with Ag particles on TiO2 particles as inorganic carrier substance. Titanium dioxide nanoparticles (P-25) were covered with silver particles using Turkevich Method or citrate reduction method. The Ag/TiO2 particles were dispersed at concentration of 0,8 wt% and 1% wt% in LDPE/ethylene vinyl acetate copolymer (EVA)-(50% w/w) at the melt state in a Haake torque Rheometer. Silver microparticles were characterized with UV-Vis Spectroscopy. The composites thus prepared were characterized through XRD, Ares Rheometer, Scanning Electronic Microscopy (SEM) and JIS Z 2801 antimicrobial tests to study the effects of the addition of particles on rheological properties, morphological behavior and antimicrobial properties. The results showed that incorporation of silver/titanium dioxide particles on composites obtained systems with differents dispersions. The Ag/TiO2 particles showed uniform distribution of Ag on TiO2 particles as observed by SEM-EDX and antimicrobial tests according to JIS Z 2801 shows excellent antimicrobial properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study aimed to investigate the antimicrobial properties and cytotoxicity of the monomer methacryloyloxyundecylpyridinium bromide (MUPB), an antiseptic agent capable of copolymerizing with denture base acrylic resins. Materials and Methods: The antimicrobial activity of MUPB was tested against the species Candida albicans, Candida dubliniensis, Candida glabrata, Lactobacillus casei, Staphylococcus aureus, and Streptococcus mutans. The minimum inhibitory and fungicidal/bactericidal concentrations (MIC, MFC/MBC) of MUPB were determined by serial dilutions in comparison with cetylpyridinium chloride (CPC). The cytotoxic effects of MUPB at concentrations ranging from 0.01 to 1 g/L were assessed by MTT test on L929 cells and compared with methyl methacrylate (MMA). The antimicrobial activity of copolymerized MUPB was tested by means of acrylic resin specimens containing three concentrations of the monomer (0, 0.3, 0.6% w/w). Activity was quantified by means of a disc diffusion test and a quantification of adhered planktonic cells. Statistical analysis employed the Mann-Whitney test for MIC and MFC/MBC, and ANOVA for the microbial adherence test (a= 0.05). Results: MUBP presented lower MIC values when compared with CPC, although differences were significant for C. dubliniensis and S. mutans only (p= 0.046 and 0.043, respectively). MFC/MBC values were similar for all species except C. albicans; in that case, MUPB presented significantly higher values (p= 0.046). MUPB presented higher cytotoxicity than MMA for all tested concentrations (p < 0.001) except at 0.01 g/L. Irrespective of the concentration incorporated and species, there was no inhibition halo around the specimens. The incorporation of MUPB influenced the adhesion of C. albicans only (p= 0.003), with lower CFU counts for the 0.6% group. Conclusions: It was concluded that non-polymerized MUPB has an antimicrobial capacity close to that of CPC and high cytotoxicity when compared with MMA. The antimicrobial activity of MUPB after incorporation within a denture base acrylic resin did not depend on its elution, but was shown to be restricted to C. albicans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infektiöse Komplikationen im Zusammenhang mit Implantaten stellen einen Großteil aller Krankenhausinfektionen dar und treiben die Gesundheitskosten signifikant in die Höhe. Die bakterielle Kolonisation von Implantatoberflächen zieht schwerwiegende medizinische Konsequenzen nach sich, die unter Umständen tödlich verlaufen können. Trotz umfassender Forschungsaktivitäten auf dem Gebiet der antibakteriellen Oberflächenbeschichtungen ist das Spektrum an wirksamen Substanzen aufgrund der Anpassungsfähigkeit und Ausbildung von Resistenzen verschiedener Mikroorganismen eingeschränkt. Die Erforschung und Entwicklung neuer antibakterieller Materialien ist daher von fundamentaler Bedeutung.rnIn der vorliegenden Arbeit wurden auf der Basis von Polymernanopartikeln und anorganischen/polymeren Verbundmaterialien verschiedene Systeme als Alternative zu bestehenden antibakteriellen Oberflächenbeschichtungen entwickelt. Polymerpartikel finden Anwendung in vielen verschiedenen Bereichen, da sowohl Größe als auch Zusammensetzung und Morphologie vielseitig gestaltet werden können. Mit Hilfe der Miniemulsionstechnik lassen sich u. A. funktionelle Polymernanopartikel im Größenbereich von 50-500 nm herstellen. Diese wurde im ersten System angewendet, um PEGylierte Poly(styrol)nanopartikel zu synthetisieren, deren anti-adhesives Potential in Bezug auf P. aeruginosa evaluiert wurde. Im zweiten System wurden sog. kontakt-aktive kolloide Dispersionen entwickelt, welche bakteriostatische Eigenschaften gegenüber S. aureus zeigten. In Analogie zum ersten System, wurden Poly(styrol)nanopartikel in Copolymerisation in Miniemulsion mit quaternären Ammoniumgruppen funktionalisiert. Als Costabilisator diente das zuvor quaternisierte, oberflächenaktive Monomer (2-Dimethylamino)ethylmethacrylat (qDMAEMA). Die Optimierung der antibakteriellen Eigenschaften wurde im nachfolgenden System realisiert. Hierbei wurde das oberflächenaktive Monomer qDMAEMA zu einem oberflächenaktiven Polyelektrolyt polymerisiert, welcher unter Anwendung von kombinierter Miniemulsions- und Lösemittelverdampfungstechnik, in entsprechende Polyelektrolytnanopartikel umgesetzt wurde. Infolge seiner oberflächenaktiven Eigenschaften, ließen sich aus dem Polyelektrolyt stabile Partikeldispersionen ohne Zusatz weiterer Tenside ausbilden. Die selektive Toxizität der Polyelektrolytnanopartikel gegenüber S. aureus im Unterschied zu Körperzellen, untermauert ihr vielversprechendes Potential als bakterizides, kontakt-aktives Reagenz. rnAufgrund ihrer antibakteriellen Eigenschaften wurden ZnO Nanopartikel ausgewählt und in verschiedene Freisetzungssysteme integriert. Hochdefinierte eckige ZnO Nanokristalle mit einem mittleren Durchmesser von 23 nm wurden durch thermische Zersetzung des Precursormaterials synthetisiert. Durch die nachfolgende Einkapselung in Poly(L-laktid) Latexpartikel wurden neue, antibakterielle und UV-responsive Hybridnanopartikel entwickelt. Durch die photokatalytische Aktivierung von ZnO mittels UV-Strahlung wurde der Abbau der ZnO/PLLA Hybridnanopartikel signifikant von mehreren Monaten auf mehrere Wochen verkürzt. Die Photoaktivierung von ZnO eröffnet somit die Möglichkeit einer gesteuerten Freisetzung von ZnO. Im nachfolgenden System wurden dünne Verbundfilme aus Poly(N-isopropylacrylamid)-Hydrogelschichten mit eingebetteten ZnO Nanopartikeln hergestellt, die als bakterizide Oberflächenbeschichtungen gegen E. coli zum Einsatz kamen. Mit minimalem Gehalt an ZnO zeigten die Filme eine vergleichbare antibakterielle Aktivität zu Silber-basierten Beschichtungen. Hierbei lässt sich der Gehalt an ZnO relativ einfach über die Filmdicke einstellen. Weiterhin erwiesen sich die Filme mit bakteriziden Konzentrationen an ZnO als nichtzytotoxisch gegenüber Körperzellen. Zusammenfassend wurden mehrere vielversprechende antibakterielle Prototypen entwickelt, die als potentielle Implantatbeschichtungen auf die jeweilige Anwendung weiterhin zugeschnitten und optimiert werden können.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitosan gel films were successfully obtained by evaporation cast from chitosan solutions in aqueous acidic solutions of organic acids (lactic and acetic acid) as gel film bandages, with a range of additives that directly influence film morphology and porosity. We show that the structure and composition of a wide range of 128 thin gel films, is correlated to the antimicrobial properties, their biocompatibility and resistance to biodegradation. Infrared spectroscopy and solid-state 13C nuclear magnetic resonance spectroscopy was used to correlate film molecular structure and composition to good antimicrobial properties against 10 of the most prevalent Gram positive and Gram negative bacteria. Chitosan gel films reduce the number of colonies after 24 h of incubation by factors of ∼105–107 CFU/mL, compared with controls. For each of these films, the structure and preparation condition has a direct relationship to antimicrobial activity and effectiveness. These gel film bandages also show excellent stability against biodegradation with lysozyme under physiological conditions (5% weight loss over a period of 1 month, 2% in the first week), allowing use during the entire healing process. These chitosan thin films and subsequent derivatives hold potential as low-cost, dissolvable bandages, or second skin, with antimicrobial properties that prohibit the most relevant intrahospital bacteria that infest burn injuries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cynara scolymus L. (artichoke) and Silybum marianum (L.) Gaertn (milk thistle), belonging to the Asteraceae family, are medicinal plants vo.ith well-reported antioxidant and hepatoprotective effects. Widely consumed as infusions, these plants can also be found in several formulations to allow an easier consumption. The bioactivity of infusions, pills, and syrups based on artichoke and milk thistle was previously reported by our research group [1 ,2] and among the various phytochemicals present in these dietary supplements, phenolic compounds are pointed out as the most responsible for their beneficial properties. With the aim of studying the antimicrobial activity and possible relation vo.ith the phenolic composition, two different formulations of each plant were assessed (pills and syrups). The phenolic profiles were obtained by HPLC-DAD-ESIIMS, and the antimicrobial activity was performed with clinical isolates from hospitalized patients, namely Escherichia coli, Escherichia coli spectrum extended producer of P-lactarnases (ESBL), Proteus mirabilis, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus (MRSA). Vanillic acid (5.58 J.tg/g) and luteolin-7-0-glucoside (2.2 J.tg/g) were the most abundant compounds in artichoke syrup, that did not reveal antimicrobial activity against the studied strains, which could be due to their low concentrations. On the other hand, artichoke pills presented a prevalence of 5-0-caffeoylquinic (28.2 J.tg/g), 1,3-dicaffeoylquinic (24 J.tg/g), and 4-0-Caffeoylquinic acids (13.3 J.tg/g); revealing the capacity to inhibit MRSA vo.ith a MIC value of 1.9 mg!g. Regarding milk thistle, isorhamnetin-0-deoxyhexoside-0-hexoside, isorhamnetin-3-0-rutinoside, and isorhamnetin-0-deoxyhexoside-0-dihexoside were the major compounds detected in the syrup, in concentrations of 7.26, 5. 75, and 3.64 J.tg/g, respectively. This formulation proved to be able to inhibit the growth of E. coli, ESBL, MRSA and P. aeruginosa, with MIC values ranging from 0.2 to 1.3 mg!mL. Hydroxylated silibinin (1.565 J.!g/g) was the major flavonoid found in the pills, that revealed antimicrobial activity against ESBL, with a MIC value of 15 mg!mL, but did not inhibit the growth of the remaining bacteria None of the studied samples was able to inhibit P. mirabilis at the studied concentrations (1000 and 26.4 mg!mL for the syrups of artichoke and milk thistle, respectively; 150 mg/mL for both pills). Overall, the studied syrups and pills of artichoke and milk thistle revealed to be a good source of phenolic compounds, with some of these formulations revealing antimicrobial activity.