973 resultados para Anticholinesterase activities
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: To characterise the phytochemical profile of whole plants of Centaurea balsamita, C. depressa and C. lycopifolia with LC-ESI-MS/MS, and as well as their antioxidant, anticholinesterase and antimicrobial activities. Methods: Organic and aqueous extracts of the three Centaurea species were evaluated for DPPH free radical, ABTS cation radical scavenging and cupric reducing antioxidant capacity (CUPRAC). Acetyland butyryl-cholinesterase enzyme inhibition abilities of the extracts using petroleum ether, acetone, methanol and water were studied to determine anticholinesterase activity, while antimicrobial activity was determined by disc diffusion method using appropriate antimicrobial standards and organisms. The phytochemical components of the methanol extracts were assessed by LC-MS/MS. Results: The methanol extract of C. balsamita exhibited much higher DPPH free and ABTS cation radicals scavenging activities (with IC50 of 62.65 ± 0.97 and 24.21 ± 0.70 mg/ml, respectively) than the other extracts. The petroleum ether extracts of the plant species exhibited moderate inhibitory activity against butyrylcholinesterase enzymes while the acetone extract of C. balsamita showed good antifungal activity against Candida albicans. Quinic acid (17513 ± 813 μg/g, 63874 ± 3066 μg/g and 108234 ± 5195 μg/g) was the major compound found in the methanol extracts of C. balsamita, C. depressa and C. Lycopifolia, respectively. Conclusion: These results indicate quinic acid is the major compound in the three plant species and that Centaurea balsamita has significant antioxidant, anticholinesterase and antimicrobial properties. Further studies to identify the compounds in the extracts responsible for the activities are required.
Resumo:
A new Expiratory Droplet Investigation System (EDIS) was used to conduct the most comprehensive program of study to date, of the dilution corrected droplet size distributions produced during different respiratory activities.----- Distinct physiological processes were responsible for specific size distribution modes. The majority of particles for all activities were produced in one or more modes, with diameters below 0.8 µm. That mode occurred during all respiratory activities, including normal breathing. A second mode at 1.8 µm was produced during all activities, but at lower concentrations.----- Speech produced particles in modes near 3.5 µm and 5 µm. The modes became most pronounced during continuous vocalization, suggesting that the aerosolization of secretions lubricating the vocal chords is a major source of droplets in terms of number.----- Non-eqilibrium droplet evaporation was not detectable for particles between 0.5 and 20 μm implying that evaporation to the equilibrium droplet size occurred within 0.8 s.
Resumo:
Technology is continually changing, and evolving, throughout the entire construction industry; and particularly in the design process. One of the principal manifestations of this is a move away from team working in a shared work space to team working in a virtual space, using increasingly sophisticated electronic media. Due to the significant operating differences when working in shared and virtual spaces adjustments to generic skills utilised by members is a necessity when moving between the two conditions. This paper reports an aspect of a CRC-CI research project based on research of ‘generic skills’ used by individuals and teams when engaging with high bandwidth information and communication technologies (ICT). It aligns with the project’s other two aspects of collaboration in virtual environments: ‘processes’ and ‘models’. The entire project focuses on the early stages of a project (i.e. design) in which models for the project are being developed and revised. The paper summarises the first stage of the research project which reviews literature to identify factors of virtual teaming which may affect team member skills. It concludes that design team participants require ‘appropriate skills’ to function efficiently and effectively, and that the introduction of high band-width technologies reinforces the need for skills mapping and measurement.
Resumo:
This paper argues for a future-oriented, inclusion of Engineering Model Eliciting Activities (EngMEAs) in elementary mathematics curricula. In EngMEAs students work with meaningful engineering problems that capitalise on and extend their existing mathematics and science learning, to develop, revise and document powerful models, while working in groups. The models developed by six groups of 12-year students in solving the Natural Gas activity are presented. Results showed that student models adequately solved the problem, although student models did not take into account all the data provided. Student solutions varied to the extent students employed the engineering context in their models and to their understanding of the mathematical concepts involved in the problem. Finally, recommendations for implementing EngMEAs and for further research are discussed.
Resumo:
Exposure to particles emitted by cooking activities may be responsible for a variety of respiratory health effects. However, the relationship between these exposures and their subsequent effects on health cannot be evaluated without understanding the properties of the emitted aerosol or the main parameters that influence particle emissions during cooking. Whilst traffic-related emissions, stack emissions and ultrafine particle concentrations (UFP, diameter < 100 nm) in urban ambient air have been widely investigated for many years, indoor exposure to UFPs is a relatively new field and in order to evaluate indoor UFP emissions accurately, it is vital to improve scientific understanding of the main parameters that influence particle number, surface area and mass emissions. The main purpose of this study was to characterise the particle emissions produced during grilling and frying as a function of the food, source, cooking temperature and type of oil. Emission factors, along with particle number concentrations and size distributions were determined in the size range 0.006-20 m using a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). An infrared camera was used to measure the temperature field. Overall, increased emission factors were observed to be a function of increased cooking temperatures. Cooking fatty foods also produced higher particle emission factors than vegetables, mainly in terms of mass concentration, and particle emission factors also varied significantly according to the type of oil used.
Resumo:
The student-teacher relationship should be a critical factor for successful teaching and learning in design education. In tradition, the relationship is defined as a master-apprentice, so design teachers’ visual assessment capability and technical standards significantly affect students’ quality of learning and achievements. However, there are some negative aspects of the master-apprentice relationship in design education that it may restrict student experiences to cultural diversity and interdisciplinary learning through various interactions with other students. A visual design subject was designed to adapt a new learning method that is to share students’ work and assessment through an asynchronous communication tool. This method was expected to reduce the negative aspects of the master-apprentice relationship and enhance peer-to-peer interactions and individualistic collaboration. A survey with two types of student groups in terms of their levels of participation was conducted to evaluate student experiences to this method. The outcomes implicate that online peer assessment is helpful to reduce the negative aspects of master-apprentice relation and can be useful for achieving the ultimate purpose of design education.
Resumo:
This study has important implications for marketing theory and practice. In an era of turbulent market environments, the organisational ability to sense and seize market opportunities and to reconfigure the resource base accordingly, has significant effects on performance. This paper uses a dynamic capability framework to explain more explicitly the intricacies of the relationship between sensing and seizing of market opportunities and reconfiguring the resource base (i.e. dynamic capabilities) and the resource base. We investigate how the attributes of dynamic capability deployment, timing, frequency and speed, influence the resource base. We test the proposed framework using survey data from 228 large organisations. Findings show that the timing and frequency of dynamic capability deployment have significant effects on the resource base.
Resumo:
The paper discusses the development and delivery of a university subject on sustainable construction, using related research projects as case studies and learning materials. It exposed students from a variety of disciplines to real life scenarios, to group around project cases, and learn to work with one another in solving sustainable development problems. The problem based learning approach directly responds to the new trends of learning by practising which, in the area of sustainability education, is particularly appropriate because of the need for multidisciplinary approach to complex issues, and the impetus for research and development to provide timely input for education in this growing discipline with a relatively short history. Collaboration of students from cross-disciplines, the engagement of industry and practitioners, the concept of using project cases and student design competition, and the tangible improvement of students’ comprehension of the sustainability phenomenon as a whole, have been the highlights of this Australian experience.