995 resultados para Anticancer compounds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioactivity-guided fractionation of several bioactive extracts obtained from Cerrado and Atlantic Forest plant species led to the isolation of potent DNA-damaging piperidine 1-5 and guanidine alkaloids 6-9 from Cassia leptophylla and Pterogyne nitens respectively, two common Leguminosae from Atlantic Forest. By means of biotechnological approach on Maytenus aquifolium, a species from Cerrado, moderate DNA-damaging sesquiterpene pyridine alkaloid 10-11 was isolated. Bioassay-guided fractionation on Casearia sylvestris, a medicinal plant species found in Cerrado and Atlantic Forest, led to the isolation of clerodane diterpenes 12-13 which showed effect on DNA. In addition, we have reported several interesting potent antifungal iridoids: 1β-hydroxy-dihydrocornin (14), 1α-hydroxy-dihydrocornin (15), α-gardiol (16), β-gardiol (17), plumericin (18), isoplumericin (19), 11-O-trans-caffeoylteucrein (20); ester derivative: 2-methyl-4-hydroxy-butyl-caffeoate (21), amide N-[7-(3'.4'-methylenedioxyphenyl)-2Z, 4Z-heptadienoyl] pyrrolidine (22) and triterpene viburgenin (23).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present investigation the marine bacteria isolated from corals, sponges sea water and sediments of coral regions in the larak Island located in the Persian Gulf and were examined for ability to produce cytotoxic metabolits in order to use as an anticancer compounds. Cytotoxic effect were isolated bacteria from different samples and were examined by Artemia Cytotoxic Bioassay test, in which 4.5 percent of sea waters, 12 percent of sediments and 28 percent of marine invertebrat showed cytotoxic activity, using Brine Shrimp Bioassay test. Streptomyces S-2004 isolated from soft coral specified as Sinularia erecta had LC50=0.5mg/m1 in Brine Shrimp Bioaassay test. The streptomyces S-2004 produced cytotoxic metabolits in low nutrient condition and sea water medium after 7 days on 250 rpm shaken in vitro condition. The extract partially were semipurified. Then ethyl acetate extraction from aceton extracted of bacterial plate had cytotoxic effect (LC50=4.19ktg/m1) in Human epidermoid carcinoma of mouth cells (KB) by using neutral red assay. Morphological effects of this extract on KB cells showed turgescence, cellular blebs and apoptosis which was a proof for anticancer compounds of the extract. It is seems that streptomyces S-2004 is a new strain and could be introduced as a talented bacteria, which produced cytotoxic metabolits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to identify new anticancer compounds from nature, a prefractionated library derived from Australian endemic plants was generated and screened against the prostate cancer cell line LNCaP using a metabolic assay. Fractions from the seeds, leaves, and wood of Anopterus macleayanus showed cytotoxic activity and were subsequently investigated using a combination of bioassay-guided fractionation and mass-directed isolation. This led to the identification of four new diterpenoid alkaloids, 6α-acetoxyanopterine (1), 4′-hydroxy-6α-acetoxyanopterine (2), 4′-hydroxyanopterine (3), and 11α-benzoylanopterine (4), along with four known compounds, anopterine (5), 7β-hydroxyanopterine (6), 7β,4′-dihydroxyanopterine (7), and 7β-hydroxy-11α-benzoylanopterine (8); all compounds were purified as their trifluoroacetate salt. The chemical structures of 1–8 were elucidated after analysis of 1D/2D NMR and MS data. Compounds 1–8 were evaluated for cytotoxic activity against a panel of human prostate cancer cells (LNCaP, C4-2B, and DuCaP) and nonmalignant cell lines (BPH-1 and WPMY-1), using a live-cell imaging system and a metabolic assay. All compounds showed potent cytotoxicity with IC50 values of <400 nM; compound 1 was the most active natural product from this series, with an IC50 value of 3.1 nM toward the LNCaP cell line. The live-cell imaging assay on 1–8 showed a concentration- and time-dependent effect on the cell morphology and proliferation of LNCaP cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The simultaneous delivery of multiple cancer drugs in combination therapies to achieve optimal therapeutic effects in patients can be challenging. This study investigated whether co-encapsulation of the BH3-mimetic ABT-737 and the topoisomerase I inhibitor camptothecin (CPT) in PEGylated polymeric nanoparticles (NPs) was a viable strategy for overcoming their clinical limitations and to deliver both compounds at optimal ratios. We found that thrombocytopenia induced by exposure to ABT-737 was diminished through its encapsulation in NPs. Similarly, CPT-associated leukopenia and gastrointestinal toxicity were reduced compared with the administration of free CPT. In addition to the reduction of dose-limiting side effects, the co-encapsulation of both anticancer compounds in a single NP produced synergistic induction of apoptosis in both in vitro and in vivo colorectal cancer models. This strategy may widen the therapeutic window of these and other drugs and may enhance the clinical efficacy of synergistic drug combinations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymer conjugates are nano-sized, multicomponent constructs already in the clinic as anticancer compounds, both as single agents or as elements of combinations. They have the potential to improve pharmacological therapy of a variety of solid tumors. Polymer-drug conjugation promotes passive tumor targeting by the enhanced permeability and retention (EPR) effect and allows for lysosomotropic drug delivery following endocytic capture. In the first part of this review, we analyze the promising results arising from clinical trials of polymer-bound chemotherapy. The experience gained on these studies provides the basis for the development of a more sophisticated second-generation of polymer conjugates. However, many challenges still lay ahead providing scope to develop and refine this field. The "technology platform'' of polymer therapeutics allows the development of both new and exciting polymeric materials, the incorporation of novel bioactive agents and combinations thereof to address recent advances in drug therapy. The rational design of polymer drug conjugates is expected to realize the true potential of these "nanomedicines".

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Characterization of the anticancer active compound trans-[PtII{(p-BrC6F4)NCH2CH2NEt2}Cl(py)] is described along with identification of electrochemical conditions that favor formation of a monomeric one-electron-oxidized PtIII derivative. The square-planar organoamidoplatinum(II) compound was synthesized through a carbon dioxide elimination reaction. Structural characterization by using single-crystal X-Ray diffraction reveals a trans configuration with respect to donor atoms of like charges. As PtIII intermediates have been implicated in the reactions of platinum anticancer agents, electrochemical conditions favoring the formation of one-electron-oxidized species were sought. Transient cyclic voltammetry at fast scan rates or steady-state rotating disc and microelectrode techniques in a range of molecular solvents and an ionic liquid confirm the existence of a well-defined, chemically and electrochemically reversible one-electron oxidation process that, under suitable conditions, generates a PtIII complex, which is proposed to be monomeric [PtIII{(p-BrC6F4)NCH2CH2NEt2}Cl(py)]+. Electron paramagnetic resonance spectra obtained from highly non-coordinating dichloromethane/([Bu4N][B(C6F5)4]) solutions, frozen to liquid nitrogen temperature immediately after bulk electrolysis in a glove box, support the PtIII assignment rather than formation of a PtII cation radical. However, the voltammetric behavior is highly dependent on the timescale of the experiments, temperature, concentration of trans-[PtII{(p-BrC6F4)NCH2CH2NEt2}- Cl(py)], and the solvent/electrolyte. In the low-polarity solvent CH2Cl2 containing the very weakly coordinating electrolyte [Bu4N][B(C6F5)4], a well-defined reversible one-electron oxidation process is observed on relatively long timescales, which is consistent with the stabilization of the cationic platinum(III) complex in non-coordinating media. Bulk electrolysis of low concentrations of [Pt{(p-BrC6F4)NCH2CH2NEt2}Cl(py)] favors the formation of monomeric [PtIII{(p-BrC6F4)NCH2CH2NEt2}Cl(py)]+. Simulations allow the reversible potential of the PtII/PtIII process and the diffusion coefficient of [PtIII{(p-BrC6F4)- NCH2CH2NEt2}Cl(py)]+ to be calculated. Reversible electrochemical behavior, giving rise to monomeric platinum(III) derivatives, is rare in the field of platinum chemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Topoisomerase inhibitors are effective for antibacterial and anticancer therapy because they can lead to the accumulation of the intermediate DNA cleavage complex formed by the topoisomerase enzymes, which trigger cell death. Here we report the application of a novel enzyme-based high-throughput screening assay to identify natural product extracts that can lead to increased accumulation of the DNA cleavage complex formed by recombinant Yersinia pestistopoisomerase I as part of a larger effort to identify new antibacterial compounds. Further characterization and fractionation of the screening positives from the primary assay led to the discovery of a depside, anziaic acid, from the lichen Hypotrachyna sp. as an inhibitor for both Y. pestis and Escherichia colitopoisomerase I. In in vitro assays, anziaic acid exhibits antibacterial activity against Bacillus subtilis and a membrane permeable strain of E. coli. Anziaic acid was also found to act as an inhibitor of human topoisomerase II but had little effect on human topoisomerase I. This is the first report of a depside with activity as a topoisomerase poison inhibitor and demonstrates the potential of this class of natural products as a source for new antibacterial and anticancer compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ligand-protein docking is an optimization problem based on predicting the position of a ligand with the lowest binding energy in the active site of the receptor. Molecular docking problems are traditionally tackled with single-objective, as well as with multi-objective approaches, to minimize the binding energy. In this paper, we propose a novel multi-objective formulation that considers: the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands and the binding (intermolecular) energy, as two objectives to evaluate the quality of the ligand-protein interactions. To determine the kind of Pareto front approximations that can be obtained, we have selected a set of representative multi-objective algorithms such as NSGA-II, SMPSO, GDE3, and MOEA/D. Their performances have been assessed by applying two main quality indicators intended to measure convergence and diversity of the fronts. In addition, a comparison with LGA, a reference single-objective evolutionary algorithm for molecular docking (AutoDock) is carried out. In general, SMPSO shows the best overall results in terms of energy and RMSD (value lower than 2A for successful docking results). This new multi-objective approach shows an improvement over the ligand-protein docking predictions that could be promising in in silico docking studies to select new anticancer compounds for therapeutic targets that are multidrug resistant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A library of 19 cycloruthenated derivatives is constructed by making use of the well-known cyclometalation reaction. Their geometries are modified in a straightforward manner by addition of either mono- or bidentate ligands, such as bipyridine, phenanthroline, 1,2-bis(diphenylphosphanyl)ethane, dimethylphenylphosphane, triphenylphosphane, and 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane (PTA) ligands, to cationic cycloruthenated centers. The antitumor properties of the compounds thus obtained are investigated in order to compare them with recently reported ruthenium complexes and cisplatin. IC50 values against mammalian cells (A-172, HCT-116, and RDM-4) are determined for the library compounds and some of them, such as those derived from orthoruthenated phenylpyridine and a bidentate N,N ligand, display activity of the same order of magnitude as cisplatin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The general solution behaviour and" the major fragmentation pathways of the anticanceractive PtIV coordination complexes, trans, trans, cis, cis-[PtCIOH{N(pFC6F4) CH2h(pY)2] (1), trans, cis, cis-[Pt(OH)2{N(p-FC6F4)CH2h(Py)2] (2), trans, cis, cis-[Pt(OH)2{N(p-HC6F4)CH2h(Py)2] (3), trans, trans, cis, cis-[PtCIOH{N(pHC6F4) CH2h(Py)2] (4), and trans, trans, cis, cis-[PtOH(OCH3){N(p-HC6F4)CH2h(PY)2] (5) (Py = pyridine) have been deduced by positive-ion tandem-in-time ESI-MS. Overall, the acquired full-scan, positive-ion ESI-MS spectra of 2, 3, and 5 were characterized by the presence of relatively low-intensity [M+Nar and [M+Kt mass spectral peaks, whereas those of 1 and 4 were dominated by extremely intense [M+Hr peaks. Complexes 2 and 3 were also noted to form [2M+Ht and [2M+Nat dilneric cations. The source of Na + and K+ ions is believed to be the sample, the solvent systems used or the transport line carrying the sample solutions into the ES ion source. Further, the fragmentation pathway of all complexes studied was found to be almost identical with concurrent loss of py and H20 molecules, loss of a {N(p-YC6F4)CH2} (Y = F, H) group and/or concomitant release of the latter group and a py ligand being the most conunon. The photochemical degradation behaviour of 1 and 2 was also investigated using either fluorescent or ultraviolet light and some products of that degradation were positively identified. Altogether, light irradiation of solutions of both complexes resulted in cation cationisation, reductive-elimination, ligand-release, ligand-exchange and ligand-addition reactions. Finally, positive- and negative-ion ESI-MSn spectra of 5' -GMP, guanosine, inosine and products of their reactions with 1, 2,3, and 4 were also recorded. On the whole, full-scan ESI-MS spectra of the pure nucleobases revealed the presence of cationic and anionic species that are highly reflective of both their solution ionic composition and their propensity t9 form polymeric clusters. Analyses of mass spectra acquired from their reaction solutions with the aforementioned platinum complexes indicated very slow kinetics. However, all complexes investigated formed, to various degrees, Pt-nucleobase adducts with guanosine and inosine, but not with 5'-GMP. The products included species having coordination numbers of III, IV, V, and VI, among which the first-time· observed, coordinatively saturated, jive-coordinate PtlI-nucleobase complexes were of most interest. The latter complexes are presumably stabilized by 7tback- donation involving the filled d orbitals of the PtII centre and the empty pz· orbital of MeCN. All products, whose peaks appeared inlull-scan ESI-MS spectra, are believed to represent solution species rather than artifacts of gas-phase processes. Finally, negativeion ESI-MSn spectra recorded in reaction solutions of 1 and 4 with guanosine and of the latter complex with inosine revealed the negative-ion-ESI-MS first-time observed, noncovalent, nucleoside-chloride adducts, with the source of chloride anion being complexes 1 and 4 theillselves. In contrast, no such adducts were observed to form with Na25'-GMP or its protonated fonn. Few suggestions are offered for the possible cause(s) behind the absence of such adduct ions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports the reaction of SnMe2Cl2 with adenosine, guanosine and inosine in aqueous solution at pH 4.5. The nucleosides give probably polymeric species in which there is monodentate coordination to O2′ of the ribose ring as indicated by 80 MHz PMR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The syntheses of the complexes formulated as SnMe2Cl2(Ad)2 (I), SnMe2Cl2(Ado)2 (II), SnMe2Cl2- (9-MeAd)2 (III) [Ad = adenine, Ado = adenosine, 9-MeAd = 9-methyladenine] as well as the more unexpected SnPhCl2(OH)(Ad)2·3H2O (IV) and SnPhCl3(Ado)2 (V) by reaction of SnMe2Cl2 or SnPh2Cl2 with the appropriate bases in methanol is described. 1H NMR studies suggest that coordination is through the N-7 position of the adenine base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin E is composed of two structurally similar compounds: tocopherols (TPs) and tocotrienols (T3). Despite being overshadowed by TP over the past few decades, T3 is now considered to be a promising anticancer agent due to its potent effects against a wide range of cancers. A growing body of evidence suggests that in addition to its antioxidative and pro-apoptotic functions, T3 possesses a number of anticancer properties that make it superior to TP. These include the inhibition of epithelial-to-mesenchymal transitions, the suppression of vascular endothelial growth factor tumor angiogenic pathway and the induction of antitumor immunity. More recently, T3, but not TP, has been shown to have chemosensitization and anti-cancer stem cell effects, further demonstrating the potential of T3 as an effective anticancer therapeutic agent. With most of the previous clinical studies on TP producing disappointing results, research has now focused on testing T3 as the next generation vitamin E for chemoprevention and cancer treatment. This review will summarize recent developments in the understanding of the anticancer effects of T3. We will also discuss current progress in clinical trials involving T3 as an adjuvant to conventional cancer therapy.