136 resultados para Anodes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical degradation of different glyphosate herbicide formulations on RuO(2) and IrO(2) DSA(A (R)) electrodes is investigated. Parameters that could influence the formation of organochloride compounds during electrolysis are studied. The effects of chloride concentration, electrodic composition, current density, and electrolysis time are reported. The influence of the oxide composition on herbicide degradation seems to be almost insignificant; however, there is a straight relationship between anode composition and organic halides formation. Commercial herbicide formulations have lower degradation rates and lead to the formation of a larger quantities of organochloride compounds. In high chloride concentrations, there is a significant increase in organic mineralization, and the relationship between chloride concentration and organic halides formation is direct. Only in low chloride medium investigated the organochloride concentration obtained was below the limit values allowed in Brazil. The determination of organic halides absorbable (AOX) during electrolysis increases significantly with the applied current. Even during long-term electrolysis, a large amount of organochloride compounds is formed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical performance of electrodeposited Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes was galvanostatically evaluated (batch mode, 50 mA cm-2) to degrade the Direct Yellow 86 dye (100 or 200 mg L-1 in 0.1 mol L-1 Na2SO4 + 1.5 g L-1 NaCl), investigating the effect of pH and temperature. Similar results were obtained for both electrodes and the best conditions for removal of color and chemical oxygen demand are pH 7 and 40 °C, when 90% decolorization is attained by passing a charge of only ~0.13 A h L-1 and total mineralization is achieved with expenditure of ~5 kW h m-3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Direct Black 22 dye was electrooxidized at 30 mA cm-2 in a flow cell using a BDD or β-PbO2 anode, varying pH (3, 7, 11), temperature (10, 25, 45 °C), and [NaCl] (0 or 1.5 g L-1). In the presence of NaCl, decolorization rates were similar for all conditions investigated, but much higher than predicted through a theoretical model assuming mass-transport control; similar behavior was observed for COD removal (at pH 7, 25 °C), independently of the anode. With no NaCl, COD removals were also higher than predicted with a theoretical model, which suggests the existence of distinct dye degradation pathways.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results concerning the degradation of the pesticide carbaryl comparing two methods: electrochemical (EC) and photo-assisted electrochemical (PAEC). The experimental variables of applied current density, electrolyte flow-rate and initial carbaryl concentration were investigated. The results demonstrate that the electrochemical degradation of carbaryl was greatly enhanced when simultaneous UV light was applied. The greatest difference between the PAEC and EC method was apparent when lower current densities were applied. The extent of COD removal was much enhanced for the combined method, independent of the applied current density. It should be noted that the complete removal of carbaryl was achieved with out the need to add NaCl to the reaction mixture, avoiding the risk of chlorinated organic species formation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of the ZrO(2):8 mol % Y(2)O(3)/NiO (YSZ/NiO) composites by a modified liquid mixture technique is reported. Nanometric NiO particles dispersed over the yttria-stabilized zirconia (YSZ) were prepared, resulting in dense sintered specimens with no solid solution formation between the oxides. Such a feature allowed for the electrical characterization of the composites in a wide range of relative volume fraction, temperature, and oxygen partial pressure. The main results indicate that the composites have high electrical conductivity, and the transport properties in these mixed ionic-electronic (MIEC) composites are strongly dependent on the relative volume fraction of the phases, microstructure, and temperature. These parameters should hence be taken into consideration for the optimized design of MIEC composites for electrochemical applications. In this context, the composite was reduced under H(2) for the preparation of high-conductivity YSZ/Ni cermets for use as solid oxide fuel cell anode material with relatively low metal content. (c) 2005 the Electrochemical Society. [DOI:10.1149/1.2149312] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimization of the major properties of anodes based on proton conductors, such as microstructure, conductivity and chemical stability, is yet to be achieved. In this study we investigated the influence of indium on the chemical stability, microstructural and electrical characteristics of proton conducting NiO-BaCe0.9-xInxY0.1O 3-δ (NiO-BCIYx) anodes. Four compositions of cermet anode substrates NiO-BCIYx were prepared using the method of evaporation and decomposition of solutions and suspensions (EDSS). Sintered anode substrates were reduced and their microstructural and electrical properties were examined before and after reduction as a function of the amount of indium. Anode substrates tested on chemical stability in the CO2 atmosphere showed high stability compared to anode substrates based on commonly used doped barium cerates. Microstructural properties of the anode pellets before and after testing in CO2 were investigated using X-ray diffraction analysis. Impedance spectroscopy measurements were used for evaluation of electrical properties of the anode pellets and the conductivity values of reduced anodes of more than 14 S cm-1 at 600 °C confirmed percolations through Ni particles. Under fuel cell operating conditions, the cell with a Ni-BCIY20 anode achieved the highest performance, demonstrating a peak power density 223 mW/cm2 at 700 °C confirming the functionality of Ni-BCIY anodes.© 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spent anodes, denominated butts in the aluminum industry, are recycled as part of the raw material used to produce new anodes. The fragmentation of the butt generates some sodium-rich powder, which is captured and included in the recycled material. This paper evaluates the influence of sodium content on anode reactivity. Six formulations with 0 to 25% butt powder were used. An average increase of 48 ppm of sodium from one to another formulation caused average increments of 3.38 and 2.72% for air and CO2 reactivity, respectively. The quality-related figures varied from 1.34 to 1.12 for CO2 and from 1.10 to 0.62 for air, showing quality loss in higher sodium content and higher impact on air reactivity. The Fischer formula predicted a carbon specific consumption of - 48.47 kg.t-1 Al for baked carbon anodes with 127 ppm to 367 ppm of sodium content, showing that the sodium can cause relevant carbon losses and increase costs of the aluminum production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CeO2-based materials doped with rare earth (TR +3) can be used as alternative to traditional NiO-YSZ anodes in solid oxide fuel cells as they have higher ionic conductivity and lower ohmic losses compared to YSZ. Moreover, they allow fuel cell operation at lower temperatures (500-800°C). In the anode composition, the concentration of NiO acting as catalyst in YSZ provides high electrical conductivity and high electrochemical activity of reactions, promoting internal reform in the cell. In this work, NiO - Ce1-xEuxO2-δ compounds (x = 0.1, 0.2 and 0.3) have been synthesized by microwave-assisted hydrothermal method. The materials were characterized by TG, XRD, TPR and SEM-FEG techniques. The refinement of data obtained by X-ray diffraction showed the presence of ceria doped with europium crystallized in a cubic phase with fluorite structure, in addition to the presence of NiO. The microwave-assisted hydrothermal method showed significant reduction in the average particle size and good mass control of phase compositions compared to other chemical synthesis techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zirconia-ceria solid-solutions are extensively used as promoters for three-way catalysts, which are applied in the control of NOx, CO and hydrocarbons emission from automotive exhausts. In addition, thesematerials can be used as anodes in solid oxide fuel cells (SOFCs) operated with hydrocarbons. There areonly few works on ZrO2-CeO2 ordered mesoporous materials for catalytic applications and for anodes inSOFCs. The interest in these anodes relies on the fact that ZrO2-CeO2materials are mixed ionic/electronic conductors in reducing atmosphere and, therefore, fuel oxidation is produced on its entire surface, while it only occurs in the [anode/electrolyte/gas] interface (triple-phase boundaries) for electronic conductors. In this work, a synthesis method was developed usingZr and Ce chloride precursors, HCl aqueous solution, Pluronic P123 as the structure directing agent, NH4OH to adjust the pH (3-4) and a Teflon autoclave to perform hydrothermal treatment (80ºC/48 hours). The samples were dried and calcined, until 540ºC in N2and 4 hours in air. The X-ray diffraction data showed that powders with higher CeO2 content are formed by a larger fraction of the cubic CeO2 phase, while for a lower CeO2content the major crystalline structure is the tetragonal ZrO2 phase. The NiO impregnation was made with an ethanol dispersion of Ni(NO3)×6H2O. The resulting powder was calcinated in air until 350ºC for 2 hours. Temperature-programmed reduction (TPR) data were collected in order to evaluate the reduction profiles of ZrO2-x%CeO2:Ni samples in H2/Ar atmosphere. Results showed lower reduction temperatures for all ceria content in samples comparing to a NiO standard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cells are a topic of high interest in the scientific community right now because of their ability to efficiently convert chemical energy into electrical energy. This thesis is focused on solid oxide fuel cells (SOFCs) because of their fuel flexibility, and is specifically concerned with the anode properties of SOFCs. The anodes are composed of a ceramic material (yttrium stabilized zirconia, or YSZ), and conducting material. Recent research has shown that an infiltrated anode may offer better performance at a lower cost. This thesis focuses on the creation of a model of an infiltrated anode that mimics the underlying physics of the production process. Using the model, several key parameters for anode performance are considered. These are the initial volume fraction of YSZ in the slurry before sintering, the final porosity of the composite anode after sintering, and the size of the YSZ and conducting particles in the composite. The performance measures of the anode, namely percolation threshold and effective conductivity, are analyzed as a function of these important input parameters. Simple two and three-dimensional percolation models are used to determine the conditions at which the full infiltrated anode would be investigated. These more simple models showed that the aspect ratio of the anode has no effect on the threshold or effective conductivity, and that cell sizes of 303 are needed to obtain accurate conductivity values. The full model of the infiltrated anode is able to predict the performance of the SOFC anodes and it can be seen that increasing the size of the YSZ decreases the percolation threshold and increases the effective conductivity at low conductor loadings. Similar trends are seen for a decrease in final porosity and a decrease in the initial volume fraction of YSZ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid oxide fuel cells (SOFCs) provide a potentially clean way of using energy sources. One important aspect of a functioning fuel cell is the anode and its characteristics (e.g. conductivity). Using infiltration of conductor particles has been shown to be a method for production at lower cost with comparable functionality. While these methods have been demonstrated experimentally, there is a vast range of variables to consider. Because of the long time for manufacture, a model is desired to aid in the development of the desired anode formulation. This thesis aims to (1) use an idealized system to determine the appropriate size and aspect ratio to determine the percolation threshold and effective conductivity as well as to (2) simulate the infiltrated fabrication method to determine the effective conductivity and percolation threshold as a function of ceramic and pore former particle size, particle fraction and the cell¿s final porosity. The idealized system found that the aspect ratio of the cell does not affect the cells functionality and that an aspect ratio of 1 is the most efficient computationally to use. Additionally, at cell sizes greater than 50x50, the conductivity asymptotes to a constant value. Through the infiltrated model simulations, it was found that by increasing the size of the ceramic (YSZ) and pore former particles, the percolation threshold can be decreased and the effective conductivity at low loadings can be increased. Furthermore, by decreasing the porosity of the cell, the percolation threshold and effective conductivity at low loadings can also be increased

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducted work with two potential alternatives to Ni, La0.8Sr0.2Cr0.5Mn0.5 (LSCM) and Sr doped LaVO3 (LSV) to serve as the electron conductor in the anode of solid oxide fuel cells SOFCs.