977 resultados para Anatomy and pathology laboratories


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formaldehyde (CH2O), the most simple and reactive of all aldehydes, is colorless, and readily polymerizing gas at normal temperature. The most extensive use is in production of resins and has an important application as a disinfectant and preservative, reason why relevant workplace exposure may also occur in pathology and anatomy laboratories and in mortuaries. A study was carried out in Portugal, in a formaldehyde production resins factory and in 10 pathology and anatomy laboratories. It was applied a risk assessment methodology based on Queensland University proposal that permitted to perform risk assessment for each activity developed in a work station. This methodology was applied in 83 different activities developed in the laboratories and in 18 activities of the factory. Also, Micronucleus Test was performed in lymphocytes from 30 factory workers and 50 laboratories workers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formaldehyde, also known as formalin, formal and methyl aldehydes, is a colorless, flammable, strong-smelling gas. It has an important application in embalming tissues and that result in exposures for workers in the pathology anatomy laboratories and mortuaries. To perform exposure assessment is necessary define exposure groups and in this occupational setting the technicians and pathologists are the most important groups. In the case of formaldehyde, it seems that health effects are more related with peak exposures than with exposure duration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Presently, the International Agency for Research on Cancer classifies formaldehyde as carcinogenic to humans (Group 1), based on sufficient evidence in humans and in experimental animals. Manyfold in vitro studies clearly indicated that formaldehyde can induce genotoxic effects in proliferating cultured mammalian cells. Furthermore, some in vivo studies have found changes in epithelial cells and in peripheral blood lymphocytes related to formaldehyde exposure. Methods - A study was carried out in Portugal, using 80 workers occupationally exposed to formaldehyde vapours: 30 workers from formaldehyde and formaldehyde-based resins production factory and 50 from 10 pathology and anatomy laboratories. A control group of 85 non-exposed subjects was considered. Exposure assessment was performed by applying simultaneously two techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection equipment with simultaneously video recording. Evaluation of genotoxic effects was performed by application of micronucleus test in exfoliated epithelial cells from buccal mucosa and peripheral blood lymphocytes. Results - Time-weighted average concentrations not exceeded the reference value (0.75 ppm) in the two occupational settings studied. Ceiling concentrations, on the other hand, were higher than reference value (0.3 ppm) in both. The frequency of micronucleus in peripheral blood lymphocytes and in epithelial cells was significantly higher in both exposed groups than in the control group (p < 0.001). Moreover, the frequency of micronucleus in peripheral blood lymphocytes was significantly higher in the laboratories group than in the factory workers (p < 0.05). A moderate positive correlation was found between duration of occupational exposure to formaldehyde (years of exposure) and micronucleus frequency in peripheral blood lymphocytes (r = 0.401; p < 0.001) and in epithelial cells (r = 0.209; p < 0.01). Conclusions - The population studied is exposed to high peak concentrations of formaldehyde with a long-term exposure. These two aspects, cumulatively, can be the cause of the observed genotoxic endpoint effects. The association of these cytogenetic effects with formaldehyde exposure gives important information to risk assessment process and may also be used to assess health risks for exposed workers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT – Background: According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Presently, the International Agency for Research on Cancer classifies formaldehyde as carcinogenic to humans (Group 1), based on sufficient evidence in humans and in experimental animals. Manyfold in vitro studies clearly indicated that formaldehyde can induce genotoxic effects in proliferating cultured mammalian cells. Furthermore, some in vivo studies have found changes in epithelial cells and in peripheral blood lymphocytes related to formaldehyde exposure. Methods: A study was carried out in Portugal, using 80 workers occupationally exposed to formaldehyde vapours: 30 workers from formaldehyde and formaldehyde-based resins production factory and 50 from 10 pathology and anatomy laboratories. A control group of 85 non-exposed subjects was considered. Exposure assessment was performed by applying simultaneously two techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection equipment with simultaneously video recording. Evaluation of genotoxic effects was performed by application of micronucleus test in exfoliated epithelial cells from buccal mucosa and peripheral blood lymphocytes. Results: Time-weighted average concentrations not exceeded the reference value (0.75 ppm) in the two occupational settings studied. Ceiling concentrations, on the other hand, were higher than reference value (0.3 ppm) in both. The frequency of micronucleus in peripheral blood lymphocytes and in epithelial cells was significantly higher in both exposed groups than in the control group (p < 0.001). Moreover, the frequency of micronucleus in peripheral blood lymphocytes was significantly higher in the laboratories group than in the factory workers (p < 0.05). A moderate positive correlation was found between duration of occupational exposure to formaldehyde (years of exposure) and micronucleus frequency in peripheral blood lymphocytes (r = 0.401; p < 0.001) and in epithelial cells (r = 0.209; p < 0.01). Conclusions: The population studied is exposed to high peak concentrations of formaldehyde with a long-term exposure. These two aspects, cumulatively, can be the cause of the observed genotoxic endpoint effects. The association of these cytogenetic effects with formaldehyde exposure gives important information to risk assessment process and may also be used to assess health risks for exposed worker

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formaldehyde (FA) the most simple and reactive of all aldehydes, is a colorless, reactive and readily polymerizing gas at normal temperature. It has a pungent, suffocating odour that is recognized by most human subjects at concentrations below 1ppm. According to the Report on Carcinogens, FA ranks 25th in the overall U.S. chemical production with more than 11 billion pounds (5 million tons) produced each year. Is an important industrial compound that is used in the manufacture of synthetic resins and chemical compounds such as lubricants and adhesives. It has also applications as a disinfectant, preservative and is used in cosmetics. Estimates of the number of persons who are occupationally exposed to FA indicate that, at least at low levels, may occur in a wide variety of industries. The occupational settings with most extensive use of formaldehyde is in the production of resins and in anatomy and pathology laboratories. Several studies reported a carcinogenic effect in humans after inhalation of FA, in particular an increased risk for nasopharyngeal cancer. Nowadays, the International Agency for Research on Cancer (IARC) classifies FA as carcinogenic to humans (group 1), on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. Manifold in vitro studies clearly indicated that FA is genotoxic. FA induced various genotoxic effects in proliferatin cultured mammalian cells. A variety of evidence suggests that the primary DNA alterations after FA exposure are DNA-protein crosslinks. Incomplete repair of DPX can lead to the formation of mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formaldehyde (CH2O) the most simple and reactive of all aldehydes, is a colorless, reactive and readily polymerizing gas at normal temperature. It has a pungent, suffocating odour that is recognized by most human subjects at concentrations below 1 ppm. According to the Report on Carcinogens, formaldehyde (FA) ranks 25th in the overall U.S. chemical production with more than 11 billion pounds (5 million tons) produced each year. Is an important industrial compound that is used in the manufacture of synthetic resins and chemical compounds such as lubricants and adhesives. It has also applications as a disinfectant, preservative and is used in cosmetics. Estimates of the number of persons who are occupationally exposed to FA indicate that, at least at low levels, may occur in a wide variety of industries. The occupational settings with most extensive use of formaldehyde is in the production of resins and in anatomy and pathology laboratories. Several studies reported a carcinogenic effect in humans after inhalation of FA, in particular an increased risk for nasopharyngeal cancer. Nowadays, the International Agency for Research on Cancer (IARC) classifies FA as carcinogenic to humans (group 1), on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. Manifold in vitro studies clearly indicated that FA is genotoxic. FA induced various genotoxic effects in proliferatin cultured mammalian cells. A variety of evidence suggests that the primary DNA alterations after FA exposure are DNA-protein crosslinks (DPX). Incomplete repair of DPX can lead to the formation of mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A replicate evaluation of increased micronucleus (MN) frequencies in peripheral lymphocytes of workers occupationally exposed to formaldehyde (FA) was undertaken to verify the observed effect and to determine scoring variability. May–Grünwald–Giemsa-stained slides were obtained from a previously performed cytokinesis-block micronucleus test (CBMNT) with 56 workers in anatomy and pathology laboratories and 85 controls. The first evaluation by one scorer (scorer 1) had led to a highly significant difference between workers and controls (3.96 vs 0.81 MN per 1000 cells). The slides were coded before re-evaluation and the code was broken after the complete re-evaluation of the study. A total of 1000 binucleated cells (BNC) were analysed per subject and the frequency of MN (in ‰) was determined. Slides were distributed equally and randomly between two scorers, so that the scorers had no knowledge of the exposure status. Scorer 2 (32 exposed, 36 controls) measured increased MN frequencies in exposed workers (9.88 vs 6.81). Statistical analysis with the two-sample Wilcoxon test indicated that this difference was not significant (p = 0.17). Scorer 3 (20 exposed, 46 controls) obtained a similar result, but slightly higher values for the comparison of exposed and controls (19.0 vs 12.89; p = 0.089). Combining the results of the two scorers (13.38 vs 10.22), a significant difference between exposed and controls (p = 0.028) was obtained when the stratified Wilcoxon test with the scorers as strata was applied. Interestingly, the re-evaluation of the slides led to clearly higher MN frequencies for exposed and controls compared with the first evaluation. Bland–Altman plots indicated that the agreement between the measurements of the different scorers was very poor, as shown by mean differences of 5.9 between scorer 1 and scorer 2 and 13.0 between scorer 1 and scorer 3. Calculation of the intra-class correlation coefficient (ICC) revealed that all scorer comparisons in this study were far from acceptable for the reliability of this assay. Possible implications for the use of the CBMNT in human biomonitoring studies are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of research work developed in anatomy and pathology laboratories have indicated that “macroscopic examination” is the task involving the highest exposure to formaldehyde. This is probably because precision and very good visibility are needed and, therefore, pathologists must lean over the specimen with consequent increase of proximity. With this research we aimed to know formaldehyde exposure in case of animal’s macroscopic examination. Three macroscopic examinations were considered and exposure assessment performed with photo ionization detection (PID) direct-reading equipment (with an 11.7 eV lamp) designated by First-Check, from Ion Science. Higher values of formaldehyde concentration (ceiling values) were register in each exam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMO - A exposição a formaldeído é reconhecidamente um dos mais importantes factores de risco presente nos laboratórios hospitalares de anatomia patológica. Neste contexto ocupacional, o formaldeído é utilizado em solução, designada comummente por formol. Trata-se de uma solução comercial de formaldeído, normalmente diluída a 10%, sendo pouco onerosa e, por esse motivo, a eleita para os trabalhos de rotina em anatomia patológica. A solução é utilizada como fixador e conservante do material biológico, pelo que as peças anatómicas a serem processadas são previamente impregnadas. No que concerne aos efeitos para a saúde do formaldeído, os efeitos locais parecem apresentar um papel mais importante comparativamente com os efeitos sistémicos, devido à sua reactividade e rápido metabolismo nas células da pele, tracto gastrointestinal e pulmões. Da mesma forma, a localização das lesões correspondem principalmente às zonas expostas às doses mais elevadas deste agente químico, ou seja, o desenvolvimento dos efeitos tóxicos dependerá mais da intensidade da dose externa do que da duração da exposição. O efeito do formaldeído no organismo humano mais facilmente detectável é a acção irritante, transitória e reversível sobre as mucosas dos olhos e aparelho respiratório superior (naso e orofaringe), o que acontece em geral para exposições frequentes e superiores a 1 ppm. Doses elevadas são citotóxicas e podem conduzir a degenerescência e necrose das mucosas e epitélios. No que concerne aos efeitos cancerígenos, a primeira avaliação efectuada pela International Agency for Research on Cancer data de 1981, actualizada em 1982, 1987, 1995 e 2004, considerando-o como um agente cancerígeno do grupo 2A (provavelmente carcinogénico). No entanto, a mais recente avaliação, em 2006, considera o formaldeído no Grupo 1 (agente carcinogénico) com base na evidência de que a exposição a este agente é susceptível de causar cancro nasofaríngeo em humanos. Constituiu objectivo principal deste estudo caracterizar a exposição profissional a formaldeído nos laboratórios hospitalares de anatomia patológica Portugueses. Pretendeu-se, ainda, descrever os fenómenos ambientais da contaminação ambiental por formaldeído e explorar eventuais associações entre variáveis. Considerou-se uma amostra de 10 laboratórios hospitalares de anatomia patológica, avaliada a exposição dos três grupos profissionais por comparação com os dois referenciais de exposição e, ainda, conhecidos os valores de concentração máxima em 83 actividades. Foram aplicados simultaneamente dois métodos distintos de avaliação ambiental: um dos métodos (Método 1) fez uso de um equipamento de leitura directa com o princípio de medição por Photo Ionization Detection, com uma lâmpada de 11,7 eV e, simultaneamente, realizou-se o registo da actividade. Este método disponibilizou dados para o referencial de exposição da concentração máxima; o outro método (Método 2) traduziu-se na aplicação do método NIOSH 2541, implicando o uso de bombas de amostragem eléctricas de baixo caudal e posterior processamento analítico das amostras por cromatografia gasosa. Este método, por sua vez, facultou dados para o referencial de exposição da concentração média ponderada. As estratégias de medição de cada um dos métodos e a definição dos grupos de exposição existentes neste contexto ocupacional, designadamente os Técnicos de Anatomia Patológica, os Médicos Anatomo-Patologistas e os Auxiliares, foram possíveis através da informação disponibilizada pelas técnicas de observação da actividade da análise (ergonómica) do trabalho. Estudaram-se diversas variáveis independentes, nomeadamente a temperatura ambiente e a humidade relativa, a solução de formaldeído utilizada, as condições de ventilação existentes e o número médio de peças processadas por dia em cada laboratório. Para a recolha de informação sobre estas variáveis foi preenchida, durante a permanência nos laboratórios estudados, uma Grelha de Observação e Registo. Como variáveis dependentes seleccionaram-se três indicadores de contaminação ambiental, designadamente o valor médio das concentrações superiores a 0,3 ppm em cada laboratório, a Concentração Média Ponderada obtida para cada grupo de exposição e o Índice do Tempo de Regeneração de cada laboratório. Os indicadores foram calculados e definidos através dos dados obtidos pelos dois métodos de avaliação ambiental aplicados. Baseada no delineado pela Universidade de Queensland, foi ainda aplicada uma metodologia de avaliação do risco de cancro nasofaríngeo nas 83 actividades estudadas de modo a definir níveis semi-quantitativos de estimação do risco. Para o nível de Gravidade considerou-se a informação disponível em literatura científica que define eventos biológicos adversos, relacionados com o modo de acção do agente químico e os associa com concentrações ambientais de formaldeído. Para o nível da Probabilidade utilizou-se a informação disponibilizada pela análise (ergonómica) de trabalho que permitiu conhecer a frequência de realização de cada uma das actividades estudadas. A aplicação simultânea dos dois métodos de avaliação ambiental resultou na obtenção de resultados distintos, mas não contraditórios, no que concerne à avaliação da exposição profissional a formaldeído. Para as actividades estudadas (n=83) verificou-se que cerca de 93% dos valores são superiores ao valor limite de exposição definido para a concentração máxima (VLE-CM=0,3 ppm). O “exame macroscópico” foi a actividade mais estudada e onde se verificou a maior prevalência de resultados superiores ao valor limite (92,8%). O valor médio mais elevado da concentração máxima (2,04 ppm) verificou-se no grupo de exposição dos Técnicos de Anatomia Patológica. No entanto, a maior amplitude de resultados observou-se no grupo dos Médicos Anatomo-Patologistas (0,21 ppm a 5,02 ppm). No que respeita ao referencial da Concentração Média Ponderada, todos os valores obtidos nos 10 laboratórios estudados para os três grupos de exposição foram inferiores ao valor limite de exposição definido pela Occupational Safety and Health Administration (TLV-TWA=0,75 ppm). Verificou-se associação estatisticamente significativa entre o número médio de peças processadas por laboratório e dois dos três indicadores de contaminação ambiental utilizados, designadamente o valor médio das concentrações superiores a 0,3 ppm (p=0,009) e o Índice do Tempo de Regeneração (p=0,001). Relativamente à temperatura ambiente não se observou associação estatisticamente significativa com nenhum dos indicadores de contaminação ambiental utilizados. A humidade relativa apresentou uma associação estatisticamente significativa apenas com o indicador de contaminação ambiental da Concentração Média Ponderada de dois grupos de exposição, nomeadamente com os Médicos Anatomo-Patologistas (p=0,02) e os Técnicos de Anatomia Patológica (p=0,04). A aplicação da metodologia de avaliação do risco nas 83 actividades estudadas permitiu verificar que, em cerca de dois terços (35%), o risco foi classificado como (pelo menos) elevado e, ainda, constatar que 70% dos laboratórios apresentou pelo menos 1 actividade com a classificação de risco elevado. Da aplicação dos dois métodos de avaliação ambiental e das informações obtidas para os dois referenciais de exposição pode concluir-se que o referencial mais adequado é a Concentração Máxima por estar associado ao modo de actuação do agente químico. Acresce, ainda, que um método de avaliação ambiental, como o Método 1, que permite o estudo das concentrações de formaldeído e simultaneamente a realização do registo da actividade, disponibiliza informações pertinentes para a intervenção preventiva da exposição por permitir identificar as actividades com a exposição mais elevada, bem como as variáveis que a condicionam. As peças anatómicas apresentaram-se como a principal fonte de contaminação ambiental por formaldeído neste contexto ocupacional. Aspecto de particular interesse, na medida que a actividade desenvolvida neste contexto ocupacional e, em particular na sala de entradas, é centrada no processamento das peças anatómicas. Dado não se perspectivar a curto prazo a eliminação do formaldeído, devido ao grande número de actividades que envolvem ainda a utilização da sua solução comercial (formol), pode concluir-se que a exposição a este agente neste contexto ocupacional específico é preocupante, carecendo de uma intervenção rápida com o objectivo de minimizar a exposição e prevenir os potenciais efeitos para a saúde dos trabalhadores expostos. ---------------- ABSTRACT - Exposure to formaldehyde is recognized as one of the most important risk factors present in anatomy and pathology laboratories from hospital settings. In this occupational setting, formaldehyde is used in solution, typically diluted to 10%, and is an inexpensive product. Because of that, is used in routine work in anatomy and pathology laboratories. The solution is applied as a fixative and preservative of biological material. Regarding formaldehyde health effects, local effects appear to have a more important role compared with systemic effects, due to his reactivity and rapid metabolism in skin, gastrointestinal tract and lungs cells. Likewise, lesions location correspond mainly to areas exposed to higher doses and toxic effects development depend more on external dose intensity than exposure duration. Human body formaldehyde effect more easily detectable is the irritating action, transient and reversible on eyes and upper respiratory tract (nasal and throat) membranes, which happen in general for frequent exposure to concentrations higher than 1 ppm. High doses are cytotoxic and can lead to degeneration, and also to mucous membranes and epithelia necrosis. With regard to carcinogenic effects, first assessment performed by International Agency for Research on Cancer in 1981, updated in 1982, 1987, 1995 and 2004, classified formaldehyde in Group 2A (probably carcinogenic). However, most recent evaluation in 2006, classifies formaldehyde carcinogenic (Group 1), based on evidence that exposure to this agent is likely to cause nasopharyngeal cancer in humans. This study principal objective was to characterize occupational exposure to formaldehyde in anatomy and pathology hospital laboratories, as well to describe formaldehyde environmental contamination phenomena and explore possible associations between variables. It was considered a sample of 10 hospital pathology laboratories, assessed exposure of three professional groups for comparison with two exposure metrics, and also knows ceiling concentrations in 83 activities. Were applied, simultaneously, two different environmental assessment methods: one method (Method 1) using direct reading equipment that perform measure by Photo Ionization Detection, with 11,7 eV lamps and, simultaneously, make activity description and film. This method provided data for ceiling concentrations for each activity study (TLV-C). In the other applied method (Method 2), air sampling and formaldehyde analysis were performed according to NIOSH method (2541). This method provided data average exposure concentration (TLV-TWA). Measuring and sampling strategies of each methods and exposure groups definition (Technicians, Pathologists and Assistants) was possible by information provided by activities (ergonomic) analysis. Several independent variables were studied, including temperature and relative humidity, formaldehyde solution used, ventilation conditions, and also anatomic pieces mean value processed per day in each laboratory. To register information about these variables was completed an Observation and Registration Grid. Three environmental contamination indicators were selected has dependent variables namely: mean value from concentrations exceeding 0,3 ppm in each laboratory, weighted average concentration obtained for each exposure group, as well each laboratory Time Regeneration Index. These indicators were calculated and determined through data obtained by the two environmental assessment methods. Based on Queensland University proposal, was also applied a methodology for assessing nasopharyngeal cancer risk in 83 activities studied in order to obtain risk levels (semi-quantitative estimation). For Severity level was considered available information in scientific literature that defines biological adverse events related to the chemical agent action mode, and associated with environment formaldehyde concentrations. For Probability level was used information provided by (ergonomic) work analysis that helped identifies activity frequency. Environmental assessment methods provide different results, but not contradictory, regarding formaldehyde occupational exposure evaluation. In the studied activities (n=83), about 93% of the values were above exposure limit value set for ceiling concentration in Portugal (VLE-CM = 0,3 ppm). "Macroscopic exam" was the most studied activity, and obtained the higher prevalence of results superior than 0,3 ppm (92,8%). The highest ceiling concentration mean value (2,04 ppm) was obtain in Technicians exposure group, but a result wider range was observed in Pathologists group (0,21 ppm to 5,02 ppm). Concerning Method 2, results from the three exposure groups, were all lower than limit value set by Occupational Safety and Health Administration (TLV-TWA=0,75ppm). There was a statistically significant association between anatomic pieces mean value processed by each laboratory per day, and two of the three environmental contamination indicators used, namely average concentrations exceeding 0,3 ppm (p=0,009) and Time Regeneration Index (p=0,001). Temperature was not statistically associated with any environmental contamination used indicators. Relative humidity had a statistically significant association only with one environmental contamination indicator, namely weighted average concentration, particularly with Pathologists group (p=0,02) and Technicians group (p=0,04). Risk assessment performed in the 83 studied activities showed that around two thirds (35%) were classified as (at least) high, and also noted that 70% of laboratories had at least 1 activity with high risk rating. The two environmental assessment methods application, as well information obtained from two exposure metrics, allowed to conclude that most appropriate exposure metric is ceiling concentration, because is associated with formaldehyde action mode. Moreover, an environmental method, like Method 1, which allows study formaldehyde concentrations and relates them with activity, provides relevant information for preventive information, since identifies the activity with higher exposure, as well variables that promote exposure. Anatomic pieces represent formaldehyde contamination main source in this occupational setting, and this is of particular interest because all activities are focused on anatomic pieces processing. Since there is no prospect, in short term, for formaldehyde use elimination due to large number of activities that still involve solution use, it can be concluded that exposure to this agent, in this particular occupational setting, is preoccupant, requiring an rapid intervention in order to minimize exposure and prevent potential health effects in exposed workers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Formaldehyde is a compound with a wide range and is commonly used in anatomy and pathology laboratories. At room temperature is quickly volatilized to a pungent and suffocating gas and its inhalation has been correlated to nuclear alterations in different tissues. We aimed to investigate whether exposure to this compound was correlated with the appearance of cytotoxic and genotoxic features in the nasal epithelial cells of students enrolled in a human anatomy course. Material and Methods: This prospective study collected periodically nasal cells from mucosa of 17 volunteers from two different undergraduate programs with different workloads of practical lessons in an anatomy laboratory, 30 and 90 hours per semester. Cells were staining according to Feulgen method and nuclear morphology was analyzed to detect possible damage. Dunn's post hoc test was used in the statistical analysis. Pearson's correlation was performed for gender, age and questionnaire responses. Results: Epithelial cells showed indicators of cytotoxicity and mutagenicity. Students with a more extensive workload in anatomy laboratory displayed a more severe profile with an increase in karyorrhexis (p < 0.05) over time. The micronucleus analysis showed difference between first and second collection (p < 0.01), although it was not maintained over the time. Students with a less extensive workload display no differences in most of cytological features. Despite karyorrhexis was present in a greater number of cells, for this group no significant difference was observed between any range. The same was observed to karyolysis and micronucleus (p > 0.05). Conclusion: Individuals exposed for short periods of time to formaldehyde are subject to the toxic action of this gas. Karyorrhexis was the most frequently observed cytotoxic feature and micronucleus showed an increase between the first time point. The patterns observed between the student's groups suggest a negative effect due to exposure time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer accounts for approximately one quarter of all cancers in females. HER2 gene amplification or HER2 protein overexpression, detected in about 20% of breast carcinomas, predicts a more aggressive clinical course and determines eligibility for targeted therapy with trastuzumab. HER2 testing has become an essential part of the clinical evaluation of all breast carcinoma patients, and accurate HER2 results are critical in identifying patients who may be benefited from targeted therapy. This study investigated the concordance in the results of HER2 immunohistochemistry assays performed in 500 invasive breast carcinomas between a reference laboratory and 149 local laboratories from all geographic regions of Brazil. Our results showed an overall poor concordance (171 of 500 cases, 34.2%) regarding HER2 results between local and reference laboratories, which may be related to the low-volume load of HER2 assays, inexperience with HER2 scoring system, and/or technical issues related to immunohistochemistry in local laboratories. Standardization of HER2 testing with rigorous quality control measures by local laboratories is highly recommended to avoid erroneous treatment of breast cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes appendix (pp.347-351) "a resume of a memoir on the relative frequency of Cancer, presented ... to the French Academy of Sciences."