984 resultados para Amyloid proteins


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Along with the increased life span of individuals, the burden of old age-associated diseases has inevitably increased. Alzheimer s disease (AD), probably the most well known geriatric disease, belongs to the old age-associated amyloid diseases. The purpose of this study was to investigate the frequency, genetic and health-associated risk factors, mutual association, and amyloid proteins in two old age-associated amyloid disorders senile systemic amyloidosis (SSA) and cerebral amyloid angiopathy (CAA) as part of the prospective population-based Vantaa 85+ autopsy study on a Finnish population aged 85 years or more (Studies I-III), completed with a case report on a patient with advanced AGel amyloidosis (Study IV). The numbers of patients investigated in the studies (I-III) were 256, 74, and 63, respectively. The diagnosis and grading of amyloid were based upon histological examination of tissue samples obtained post mortem and stained with Congo red. The amyloid fibril and associated proteins were characterized by immunohistochemical staining methods. The genotype frequencies of 20 polymorphisms in 9 genes and information on health-associated risk factors in subjects with and without SSA and CAA were compared. In a Finnish population ≥ 95 years of age, SSA and CAA occurred in 36% and 49% of the subjects, respectively. In total, two-thirds of these very elderly individuals had SSA, CAA, or both. However, in only 14% of the population these two conditions co-occurred. In subjects 85 years or older, the prevalence of SSA was 25%. In this population, SSA was associated with age at the time of death (p=0.002), myocardial infarctions (MIs; p=0.004), the G/G (Val/Val) genotype of the exon 24 polymorphism in the alpha2-macroglobulin (α2M) gene (p=0.042) and with the H2 haplotype of the tau gene (p=0.016). In contrast, the presence of CAA was strongly associated with APOE e4 (p=0.0003), with histopathological AD (p=0.0005), and with clinical dementia (p=0.01) in both e4+ (p=0.02) and e4- (p=0.06) individuals. Apart from demonstrating the amyloid fibril proteins, complement proteins 3d (C3d) and 9 (C9) were detected in the amyloid deposits of CAA and AGel amyloidosis, and α2M protein was found in fibrous scar tissue close to SSA. In conclusion, this first population based study on SSA shows that both SSA and CAA are common in very elderly individuals. Old age, MIs, the exon 24 polymorphism of the α2M gene, and H1/H2 polymorphism of the tau gene associate with SSA while clinical dementia and APOE ε4 genotype associate with CAA. The high prevalence of CAA, combined with its association with clinical dementia independent of APOE genotype, neuropathological AD, or SSA, also highlights its clinical significance in the very aged, among which the serious end stage complications of CAA, namely multiple infarctions and hemorrhages, are rare. The report on a patient having advanced AGel amyloidosis added knowledge on the disease and showed that this generally benign condition occasionally may lead to death. Further studies are warranted to confirm the findings in other populations. Also, the role of α2M and tau in the pathogenesis of SSA and the involvement of complement in the process of amyloid beta (Aβ) protein elimination from the brain remain to be clarified. Finally, the high prevalence of SSA in the elderly raises the need for prospective clinical studies to define its clinical significance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les protéines amyloïdes sont impliquées dans les maladies neurodégénératives comme Alzheimer, Parkinson et les maladies à prions et forment des structures complexes, les fibres amyloïdes. Le mécanisme de formation de ces fibres est un processus complexe qui implique plusieurs espèces d’agrégats intermédiaires. Parmi ces espèces, des petits agrégats, les oligomères, sont reconnus comme étant l’espèce amyloïde toxique, mais leur mécanisme de toxicité et d’agrégation sont mal compris. Cette thèse présente les résultats d’une étude numérique des premières étapes d’oligomérisation d’un peptide modèle GNNQQNY, issu d’une protéine prion, pour des systèmes allant du trimère au 50-mère, par le biais de simulations de dynamique moléculaire couplée au potentiel gros-grain OPEP. Nous trouvons que le mécanisme d’agrégation du peptide GNNQQNY suit un processus complexe de nucléation, tel qu’observé expérimentalement pour plusieurs protéines amyloïdes. Nous observons aussi que plusieurs chemins de formation sont accessibles à l’échelle du 20-mère et du 50-mère, ce qui confère aux structures un certain degré de polymorphisme et nous sommes capable de reproduire, dans nos simulations, des oligomères protofibrillaires qui présentent des caractéristiques structurelles observées expérimentalement chez les fibres amyloïdes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les protéines amyloïdes sont retrouvées sous forme de fibres dans de nombreuses maladies neurodégénératives. En tentant d’élucider le mécanisme de fibrillation, les chercheurs ont découvert que cette réaction se fait par un phénomène de nucléation passant par des oligomères. Il semblerait que ces espèces soient la principale cause de la toxicité observée dans les cellules des patients atteints d’amyloïdose. C’est pourquoi un intérêt particulier est donc porté aux premières étapes d’oligomérisation. Dans ce mémoire, nous nous intéressons à une séquence d’acide aminé fortement hydrophobe de l’α-synucléine appelée composante non β -amyloïde (Non-Amyloid β Component ou NAC). Cette dernière est retrouvée sous forme de fibres dans les corps et les neurites de Lewy des patients atteints de la maladie de Parkinson. De plus, elle constitue une composante minoritaire des fibres impliquées dans la maladie d’Alzheimer. Nous avons observé les changements structuraux qui ont lieu pour le monomère, le dimère et le trimère de la séquence NAC de l’α-synucléine. Nous nous sommes aussi intéressés aux conséquences structurelles observées dans des oligomères hétérogènes qui impliqueraient, Aβ1−40. Pour cela nous utilisons des dynamiques moléculaires, d’échange de répliques couplées au potentiel gros-grain, OPEP. Nous constatons une disparition des hélices α au profit des feuillets β , ainsi que le polymorphisme caractéristique des fibres amyloïdes. Certaines régions se sont démarquées par leurs capacités à former des feuillets β . La disparition de ces régions lorsque NAC est combinée à Aβ laisse entrevoir l’importance de l’emplacement des résidus hydrophobes dans des structures susceptibles de former des fibres amyloïdes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les protéines sont au coeur de la vie. Ce sont d'incroyables nanomachines moléculaires spécialisées et améliorées par des millions d'années d'évolution pour des fonctions bien définies dans la cellule. La structure des protéines, c'est-à-dire l'arrangement tridimensionnel de leurs atomes, est intimement liée à leurs fonctions. L'absence apparente de structure pour certaines protéines est aussi de plus en plus reconnue comme étant tout aussi cruciale. Les protéines amyloïdes en sont un exemple marquant : elles adoptent un ensemble de structures variées difficilement observables expérimentalement qui sont associées à des maladies neurodégénératives. Cette thèse, dans un premier temps, porte sur l'étude structurelle des protéines amyloïdes bêta-amyloïde (Alzheimer) et huntingtine (Huntington) lors de leur processus de repliement et d'auto-assemblage. Les résultats obtenus permettent de décrire avec une résolution atomique les interactions des ensembles structurels de ces deux protéines. Concernant la protéine bêta-amyloïde (AB), nos résultats identifient des différences structurelles significatives entre trois de ses formes physiologiques durant ses premières étapes d'auto-assemblage en environnement aqueux. Nous avons ensuite comparé ces résultats avec ceux obtenus au cours des dernières années par d'autres groupes de recherche avec des protocoles expérimentaux et de simulations variés. Des tendances claires émergent de notre comparaison quant à l'influence de la forme physiologique de AB sur son ensemble structurel durant ses premières étapes d'auto-assemblage. L'identification des propriétés structurelles différentes rationalise l'origine de leurs propriétés d'agrégation distinctes. Par ailleurs, l'identification des propriétés structurelles communes offrent des cibles potentielles pour des agents thérapeutiques empêchant la formation des oligomères responsables de la neurotoxicité. Concernant la protéine huntingtine, nous avons élucidé l'ensemble structurel de sa région fonctionnelle située à son N-terminal en environnement aqueux et membranaire. En accord avec les données expérimentales disponibles, nos résultats sur son repliement en environnement aqueux révèlent les interactions dominantes ainsi que l'influence sur celles-ci des régions adjacentes à la région fonctionnelle. Nous avons aussi caractérisé la stabilité et la croissance de structures nanotubulaires qui sont des candidats potentiels aux chemins d'auto-assemblage de la région amyloïde de huntingtine. Par ailleurs, nous avons également élaboré, avec un groupe d'expérimentateurs, un modèle détaillé illustrant les principales interactions responsables du rôle d'ancre membranaire de la région N-terminal, qui sert à contrôler la localisation de huntingtine dans la cellule. Dans un deuxième temps, cette thèse porte sur le raffinement d'un modèle gros-grain (sOPEP) et sur le développement d'un nouveau modèle tout-atome (aaOPEP) qui sont tous deux basés sur le champ de force gros-grain OPEP, couramment utilisé pour l'étude du repliement des protéines et de l'agrégation des protéines amyloïdes. L'optimisation de ces modèles a été effectuée dans le but d'améliorer les prédictions de novo de la structure de peptides par la méthode PEP-FOLD. Par ailleurs, les modèles OPEP, sOPEP et aaOPEP ont été inclus dans un nouveau code de dynamique moléculaire très flexible afin de grandement simplifier leurs développements futurs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protein aggregation, linked to many of diseases, is initiated when monomers access rogue conformations that are poised to form amyloid fibrils. We show, using simulations of src SH3 domain, that mechanical force enhances the population of the aggregation-prone (N*) states, which are rarely populated under force free native conditions but are encoded in the spectrum of native fluctuations. The folding phase diagrams of SH3 as a function of denaturant concentration (C]), mechanical force (f), and temperature exhibit an apparent two-state behavior, without revealing the presence of the elusive N* states. Interestingly, the phase boundaries separating the folded and unfolded states at all C] and f fall on a master curve, which can be quantitatively described using an analogy to superconductors in a magnetic field. The free energy profiles as a function of the molecular extension (R), which are accessible in pulling experiments, (R), reveal the presence of a native-like N* with a disordered solvent-exposed amino-terminal beta-strand. The structure of the N* state is identical with that found in Fyn SH3 by NMR dispersion experiments. We show that the timescale for fibril formation can be estimated from the population of the N* state, determined by the free energy gap separating the native structure and the N* state, a finding that can be used to assess fibril forming tendencies of proteins. The structures of the N* state are used to show that oligomer formation and likely route to fibrils occur by a domain-swap mechanism in SH3 domain. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Identifying the structures of membrane bound proteins is critical to understanding their function in healthy and diseased states. We introduce a surface enhanced Raman spectroscopy technique which can determine the conformation of membrane-bound proteins, at low micromolar concentrations, and also in the presence of a substantial membrane-free fraction. Unlike conventional surface enhanced Raman spectroscopy, our approach does not require immobilization of molecules, as it uses spontaneous binding of proteins to lipid bilayer-encapsulated Ag nanoparticles. We apply this technique to probe membrane-attached oligomers of Amyloid-beta(40) (A beta(40)), whose conformation is keenly sought in the context of Alzheimer's disease. Isotope-shifts in the Raman spectra help us obtain secondary structure information at the level of individual residues. Our results show the presence of a beta-turn, flanked by two beta-sheet regions. We use solid-state NMR data to confirm the presence of the beta-sheets in these regions. In the membrane-attached oligomer, we find a strongly contrasting and near-orthogonal orientation of the backbone H-bonds compared to what is found in the mature, less-toxic A beta fibrils. Significantly, this allows a ``porin'' like beta-barrel structure, providing a structural basis for proposed mechanisms of A beta oligomer toxicity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synucleins are small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

alpha B-Crystallin is a ubiquitous small heat-shock protein (sHsp) renowned for its chaperone ability to prevent target protein aggregation. It is stress-inducible and its up-regulation is associated with a number of disorders, including those linked to the deposition of misfolded proteins, such as Alzheimer's and Parkinson's diseases. We have characterised the formation of amyloid fibrils by human alpha B-crystallin in detail, and also that of alpha A-crystallin and the disease-related mutant R120G (alpha B-crystallin. We find that the last 12 amino acid residues of the C-terminal region of alpha B-crystallin are predicted from their physico-chemical properties to have a very low propensity to aggregate. H-1 NMR spectroscopy reveals that this hydrophilic C-terminal region is flexible both in its solution state and in amyloid fibrils, where it protrudes from the fibrillar core. We demonstrate, in addition, that the equilibrium between different protofilament assemblies can be manipulated and controlled in vitro to select for particular alpha B-crystallin amyloid morphologies. Overall, this study suggests that there could be a fine balance in vivo between the native functional sHsp state and the formation of amyloid fibrils. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transmembrane proteins play crucial roles in many important physiological processes. The intracellular domain of membrane proteins is key for their function by interacting with a wide variety of cytosolic proteins. It is therefore important to examine this interaction. A recently developed method to study these interactions, based on the use of liposomes as a model membrane, involves the covalent coupling of the cytoplasmic domains of membrane proteins to the liposome membrane. This allows for the analysis of interaction partners requiring both protein and membrane lipid binding. This thesis further establishes the liposome recruitment system and utilises it to examine the intracellular interactome of the amyloid precursor protein (APP), most well-known for its proteolytic cleavage that results in the production and accumulation of amyloid beta fragments, the main constituent of amyloid plaques in Alzheimer’s disease pathology. Despite this, the physiological function of APP remains largely unclear. Through the use of the proteo-liposome recruitment system two novel interactions of APP’s intracellular domain (AICD) are examined with a view to gaining a greater insight into APP’s physiological function. One of these novel interactions is between AICD and the mTOR complex, a serine/threonine protein kinase that integrates signals from nutrients and growth factors. The kinase domain of mTOR directly binds to AICD and the N-terminal amino acids of AICD are crucial for this interaction. The second novel interaction is between AICD and the endosomal PIKfyve complex, a lipid kinase involved in the production of phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) from phosphatidylinositol-3-phosphate, which has a role in controlling ensdosome dynamics. The scaffold protein Vac14 of the PIKfyve complex binds directly to AICD and the C-terminus of AICD is important for its interaction with the PIKfyve complex. Using a recently developed intracellular PI(3,5)P2 probe it is shown that APP controls the formation of PI(3,5)P2 positive vesicular structures and that the PIKfyve complex is involved in the trafficking and degradation of APP. Both of these novel APP interactors have important implications of both APP function and Alzheimer’s disease. The proteo-liposome recruitment method is further validated through its use to examine the recruitment and assembly of the AP-2/clathrin coat from purified components to two membrane proteins containing different sorting motifs. Taken together this thesis highlights the proteo-liposome recruitment system as a valuable tool for the study of membrane proteins intracellular interactome. It allows for the mimicking of the protein in its native configuration therefore identifying weaker interactions that are not detected by more conventional methods and also detecting interactions that are mediated by membrane phospholipids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early detection, clinical management and disease recurrence monitoring are critical areas in cancer treatment in which specific biomarker panels are likely to be very important in each of these key areas. We have previously demonstrated that levels of alpha-2-heremans-schmid-glycoprotein (AHSG), complement component C3 (C3), clusterin (CLI), haptoglobin (HP) and serum amyloid A (SAA) are significantly altered in serum from patients with squamous cell carcinoma of the lung. Here, we report the abundance levels for these proteins in serum samples from patients with advanced breast cancer, colorectal cancer (CRC) and lung cancer compared to healthy controls (age and gender matched) using commercially available enzyme-linked immunosorbent assay kits. Logistic regression (LR) models were fitted to the resulting data, and the classification ability of the proteins was evaluated using receiver-operating characteristic curve and leave-one-out cross-validation (LOOCV). The most accurate individual candidate biomarkers were C3 for breast cancer [area under the curve (AUC) = 0.89, LOOCV = 73%], CLI for CRC (AUC = 0.98, LOOCV = 90%), HP for small cell lung carcinoma (AUC = 0.97, LOOCV = 88%), C3 for lung adenocarcinoma (AUC = 0.94, LOOCV = 89%) and HP for squamous cell carcinoma of the lung (AUC = 0.94, LOOCV = 87%). The best dual combination of biomarkers using LR analysis were found to be AHSG + C3 (AUC = 0.91, LOOCV = 83%) for breast cancer, CLI + HP (AUC = 0.98, LOOCV = 92%) for CRC, C3 + SAA (AUC = 0.97, LOOCV = 91%) for small cell lung carcinoma and HP + SAA for both adenocarcinoma (AUC = 0.98, LOOCV = 96%) and squamous cell carcinoma of the lung (AUC = 0.98, LOOCV = 84%). The high AUC values reported here indicated that these candidate biomarkers have the potential to discriminate accurately between control and cancer groups both individually and in combination with other proteins. Copyright © 2011 UICC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection, plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (>5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly of proteins and peptides into polymeric amyloid fibrils is a process that has important implications ranging from the understanding of protein misfolding disorders to the discovery of novel nanobiomaterials. In this study, we probe the stability of fibrils prepared at pH 2.0 and composed of the protein insulin by manipulating electrostatic interactions within the fibril architecture. We demonstrate that strong electrostatic repulsion is sufficient to disrupt the hydrogen-bonded, cross-β network that links insulin molecules and ultimately results in fibril dissociation. The extent of this dissociation correlates well with predictions for colloidal models considering the net global charge of the polypeptide chain, although the kinetics of the process is regulated by the charge state of a single amino acid. We found the fibrils to be maximally stable under their formation conditions. Partial disruption of the cross-β network under conditions where the fibrils remain intact leads to a reduction in their stability. Together, these results support the contention that a major determinant of amyloid stability stems from the interactions in the structured core, and show how the control of electrostatic interactions can be used to characterize the factors that modulate fibril stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembled structures capable of mediating electron transfer are an attractive scientific and technological goal. Therefore, systematic variants of SH3-Cytochrome b(562) fusion proteins were designed to make amyloid fibers displaying heme-b(562) electron transfer complexes. TEM and AFM data show that fiber morphology responds systematically to placement of b(562) within the fusion proteins. UV-vis spectroscopy shows that, for the fusion proteins under test, only half the fiber-borne b(562) binds heme with high affinity. Cofactor binding also improves the AFM imaging properties and changes the fiber morphology through changes in cytochrome conformation. Systematic observations and measurements of fiber geometry suggest that longitudinal registry of subfilaments within the fiber, mediated by the interaction and conformation of the displayed proteins and their interaction with surfaces, gives rise to the observed morphologies, including defects and kinks. Of most interest is the role of small molecule modulation of fiber structure and mechanical stability. A minimum complexity model is proposed to capture and explain the fiber morphology in the light of these results. Understanding the complex interplay between these factors will enable a fiber design that supports longitudinal electron transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyloid fibres displaying cytochrome b562 were probed using scanning tunnelling microscopy (STM) in vacuo. The cytochromes are electron transfer proteins containing a haem cofactor and could, in principle, mediate electron transfer between the tip and the gold substrate. If the core fibres were insulating and electron transfer within the 3D haem network was detected, then the electron transport properties of the fibre could be controlled by genetic engineering. Three kinds of STM images were obtained. At a low bias (<1.5 V) the fibres appeared as regions of low conductivity with no evidence of cytochrome mediated electron transfer. At a high bias, stable peaks in tunnelling current were observed for all three fibre species containing haem and one species of fibre that did not contain haem. In images of this kind, some of the current peaks were collinear and spaced around 10 nm apart over ranges longer than 100 nm, but background monomers complicate interpretation. Images of the third kind were rare (1 in 150 fibres); in these, fully conducting structures with the approximate dimensions of fibres were observed, suggesting the possibility of an intermittent conduction mechanism, for which a precedent exists in DNA. To test the conductivity, some fibres were immobilized with sputtered gold, and no evidence of conduction between the grains of gold was seen. In control experiments, a variation of monomeric cytochrome b562 was not detected by STM, which was attributed to low adhesion, whereas a monomeric multi-haem protein, GSU1996, was readily imaged. We conclude that the fibre superstructure may be intermittently conducting, that the cytochromes have been seen within the fibres and that they are too far apart for detectable current flow between sites to occur. We predict that GSU1996, being 10 nm long, is more likely to mediate successful electron transfer along the fibre as well as being more readily detectable when displayed from amyloid.