999 resultados para Amorphous semiconductor
Resumo:
Microwave modulation has been achieved by using thin-film amorphous-semiconductor switches made of ternary chalcogenides. X-band microwaves were modulated by a threshold switch at frequencies varying from 100 Hz to 1 MHz, with modulation efficiencies comparable to siliconp¿i¿n diodes. The insertion loss was 0.5 to 0.6 dB and the isolation was 18 dB at 100 mA operating current. Possible applications this method are discussed.
Resumo:
Microwave switches operating in the X band were designed and fabricated using amorphous chalcogenide semiconductors of composition GexTeyAsz. Threshold devices were shown to operate as microwave modulators at modulation frequencies of up to 100 MHz. No delay time was observed at the highest frequency although the modulation efficiency decreased above 10 MHz owing to the finite recovery time which was approximately 0.3 × 10−8s. The devices can also be used as variolossers, the insertion loss being 0.5 dB in the OFF state and increasing on switching from 5 dB at 1 mA device current to 18 dB at 100 mA.The behaviour of the threshold switches can be explained in terms of the formation of a conducting filament in the ON state with a constant current density of 2 × 104Acm−2 that is shunted by the device capacitance. The OFF state conductivity σ varies as ωn (0.5 < n < 1) which is characteristic of hopping in localized states. However, there was evidence of a decrease in n or a saturation of the conductivity at high frequencies.As a result of phase separation memory switches require no holding current in the ON state and may be used as novel latching semiconductor phase-shifters.
Resumo:
We present a simple and semi-physical analytical description of the current-voltage characteristics of amorphous oxide semiconductor thin-film transistors in the above-threshold and sub-threshold regions. Both regions are described by single unified expression that employs the same set of model parameter values directly extracted from measured terminal characteristics. The model accurately reproduces measured characteristics of amorphous semiconductor thin film transistors in general, yielding a scatter of < 4%. © 1980-2012 IEEE.
Resumo:
Pressure and temperature dependence of the electrical resistivity of amorphous Ga20Te80 alloy is reported for the first time. The alloy undergoes a pressure induced amorphous semiconductor-to-crystalline metal phase transition at 6.5 ± 0.5 GPa. The high pressure crystalline phase is a mixture of Te and GaTe3 phases.
Resumo:
The effect of pressure on the electrical resistivity of amorphous n-type (GeSe3.5)100�xBix been studied in a Bridgeman anvil system up to a pressure of 90 kbar down to liquid nitrogen temperature. A continuous amorphous semiconductor to metal-like solid transition in the undoped GeSe3.5 is observed at room temperature. Incorporation of Bi in the GeSe3.5 network is found to significantly disturb the behaviour of the resistivity with pressure. With increasing Bi concentration a much broader variation in resistivity with pressure is observed. The temperature dependence of the resistivity and activation energy at different pressures is also measured and they are found to be composition dependent. Results are discussed in the light of the Phillips Model of ordered clusters in chalcogenide semiconductors.
Resumo:
Electrical transport in Bi doped amorphous semiconductors (GeSe3.5)100-xBix (x=0,4,10) is studied in a Bridgman anvil system up to a pressure of 90 kbar and down to 77 K. A pressure induced continuous transition from an amorphous semiconductor to a metal-like solid is observed in GeSe3.5. The addition of Bi disturbs significantly the behaviour of resistivity with pressure. The results are discussed in the light of molecular cluster model for GeySe1-y proposed by Phillips.
Resumo:
In this paper the magnetic and magneto-optical properties of amorphous rare earth-transition metal (RE-TM) alloys as well as the magnetic coupling in the multi-layer thin films for high density optical data storage are presented. Using magnetic effect in scanning tunneling microscopy the clusters structure of amorphous RE-TM thin films has been observed and the perpendicular magnetic anisotropy in amorphous RE-TM thin films has been interpreted. Experimental results of quick phase transformation under short pulse laser irradiation of amorphous semiconductor and metallic alloy thin films for phase change optical recording are reported. A step-by-step phase transformation process through metastable states has been observed. The waveform of crystallization propagation in micro-size spot during laser recording in amorphous semiconductor thin films is characterized and quick recording and erasing mechanism for optical data storage with high performance are discussed. The nonlinear optical effects in amorphous alloy thin films have been studied. By photo-thermal effect or third order optical nonlinearity, the optical self-focusing is observed in amorphous mask thin films. The application of amorphous thin films with super-resolution near field structure for high-density optical data storage is performed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This thesis work has mainly concentrated on the investigation of the ,optical and thermal properties of binary semiconducting chalcogenide glasses belonging to the AivB¥5x and AZBXEX families. The technique used for these studies is a relatively new one namely, the photoacoustic (PA) technique. This technique is based on the detection of acoustic signal produced in an enclosed volume when the sample is irradiated by an intensity modulated radiation. The signal produced depends upon the optical properties of the sample, and the thermal properties of the sample, backing material and the surrounding gas. For the present studies an efficient signal beam gas-microphone PA spectrometer, consisting of a high power Xenon lamp, monochromator, light beam chopper, PA cell with microphone and lock-in amplifier, has been set up. Two PA cells have been fabricated: one for room temperature measurements and another for measurements at high temperatures. With the high temperature PA cell measurements can be taken upto 250°C. Provisions are incorporated. in both the cells to change the volume and to use different backing materials for the sample. The cells have been calibrated by measuring the frequency response of the cells using carbon black as the sample
Resumo:
In the present paper, we discuss a generalized theory of electrical characteristics for amorphous semiconductor (or insulator) Schottky barriers, considering: (i) surface states, (ii) doping impurity states at a single energy level and (iii) energetically distributed bulk impurity states. We also consider a thin oxide layer (≈10 Å) between metal and semiconductor. We develop current versus applied potential characteristics considering the variation of the Fermi level very close to contact inside the semiconductor and decrease in barrier height due to the image force effect as well as potential fall on the oxide layer. Finally, we discuss the importance of each parameter, i.e. surface states, distributed impurity states, doping impurity states, thickness of oxide layer etc. on the log I versus applied potential characteristics. The present theory is also applicable for intimate contact, i.e. metal-semiconductor contact, crystalline material structures or for Schottky barriers in insulators or polymers.
Resumo:
We present an analytical field-effect method to extract the density of subgap states (subgap DOS) in amorphous semiconductor thin-film transistors (TFTs), using a closed-form relationship between surface potential and gate voltage. By accounting the interface states in the subthreshold characteristics, the subgap DOS is retrieved, leading to a reasonably accurate description of field-effect mobility and its gate voltage dependence. The method proposed here is very useful not only in extracting device performance but also in physically based compact TFT modeling for circuit simulation.
Resumo:
By using techniques of rapid quenching from the melt, metastable phases have been obtained in ternary alloys which contain tellurium as a major component and two of the three noble metals (Cu, Ag, Au) as minor components. The metastable phases found in this investigation are either simple cubic or amorphous. The formation of the simple cubic phase is discussed. The electrical resistance and the thermoelectric power of the simple cubic alloy (Au30Te70) have been measured and interpreted in terms of atomic bondings. The semiconducting properties of a metastable amorphous alloy (Au5Cu25Te70) have been measured. The experimental results are discussed in connection with a theoretical consideration of the validity of band theory in an amorphous solid. The existence of extrinsic conduction in an amorphous semiconductor is suggested by the result of electrical resistance and thermoelectric power measurements.
Resumo:
We present an analytical field-effect method to extract the density of subgap states (subgap DOS) in amorphous semiconductor thin-film transistors (TFTs), using a closed-form relationship between surface potential and gate voltage. By accounting the interface states in the subthreshold characteristics, the subgap DOS is retrieved, leading to a reasonably accurate description of field-effect mobility and its gate voltage dependence. The method proposed here is very useful not only in extracting device performance but also in physically based compact TFT modeling for circuit simulation. © 2012 IEEE.