1000 resultados para Algoritmos genéticos -- TFM
Resumo:
El problema de la regresión simbólica consiste en el aprendizaje, a partir de un conjunto muestra de datos obtenidos experimentalmente, de una función desconocida. Los métodos evolutivos han demostrado su eficiencia en la resolución de instancias de dicho problema. En este proyecto se propone una nueva estrategia evolutiva, a través de algoritmos genéticos, basada en una nueva estructura de datos denominada Straight Line Program (SLP) y que representa en este caso expresiones simbólicas. A partir de un SLP universal, que depende de una serie de parámetros cuya especialización proporciona SLP's concretos del espacio de búsqueda, la estrategia trata de encontrar los parámetros óptimos para que el SLP universal represente la función que mejor se aproxime al conjunto de puntos muestra. De manera conceptual, este proyecto consiste en un entrenamiento genético del SLP universal, utilizando los puntos muestra como conjunto de entrenamiento, para resolver el problema de la regresión simbólica.
Resumo:
A definição das parcelas familiares em projetos de reforma agrária envolve questões técnicas e sociais. Essas questões estão associadas principalmente às diferentes aptidões agrícolas do solo nestes projetos. O objetivo deste trabalho foi apresentar método para realizar o processo de ordenamento territorial em assentamentos de reforma agrária empregando Algoritmo Genético (AG). O AG foi testado no Projeto de Assentamento Veredas, em Minas Gerais, e implementado com base no sistema de aptidão agrícola das terras.
Resumo:
Este artigo avalia os diferentes impactos de variáveis relevantes na descoberta e na difusão de tecnologias, em mercados de alta competitividade. O objetivo foi identificar possibilidades de convívio de diferentes grupos estratégicos, associados ao uso ou à produção de tecnologias convencionais ou inovadoras. Foi utilizado um método matemático de busca e otimização, inspirado nos mecanismos da genética e na evolução de população de seres vivos. Os resultados obtidos sugerem que a interação entre empresas inovadoras pode, simultaneamente, permitir um aprimoramento da tecnologia e criar obstáculos para a entrada de novos competidores. Apesar de ser uma simplificação que não permite incorporar toda a complexidade do mercado, o modelo possibilita uma investigação dos comportamentos corporativos e de evolução de estratégias tecnológicas, principalmente em situações em que é difícil levantar dados empíricos ou em que casos específicos não permitem generalizações de evidências.
Resumo:
Ao me ter sido apresentado o tema focado neste trabalho, a curiosidade apoderou-se de mim para tentar perceber o que eram os algoritmos genéticos, a aprendizagem automática e a aplicação dos algoritmos genéticos sobre este tipo de aprendizagem e onde é que estas técnicas podiam ser aplicadas. Assim, neste trabalho é realizado um estudo destes temas relativamente ao seu funcionamento, aplicabilidade, problemas e soluções existentes, bem como, a comparação entre duas das mais conhecidas abordagens ao nível da aprendizagem automática baseada em algoritmos genéticos. São no fim apresentados programas exemplificativos de implementações de aplicação de algoritmos genéticos a problemas de optimização/descoberta e de aprendizagem automática. Este texto está organizado em cinco capítulos, sendo o primeiro a introdução, o segundo é uma apresentação dos algoritmos genéticos, no terceiro capítulo é apresentada a técnica de aprendizagem automática baseada em algoritmos genéticos, as suas diferentes abordagens e implementações, aplicabilidade e comparação entre abordagens. No quarto capítulo são apresentados alguns exemplos práticos que pretendem demonstrar a forma como se implementam algumas das abordagens referidas nos capítulos anteriores com o intuito de ver o seu funcionamento na prática e comparar diferentes algoritmos no mesmo problema.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores. Área de Especialização de Automação e Sistemas.
Resumo:
Dissertação de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica Ramo de Manutenção e Produção
Resumo:
Aquando da definição de um layout por fluxo de produto, ou linha de produção, é necessário proceder-se à melhor selecção de combinações de tarefas a serem executadas em cada estação / posto de trabalho para que o trabalho seja executado numa sequência exequível e sejam necessárias quantidades de tempo aproximadamente iguais em cada estação / posto de trabalho. Este processo é chamado de balanceamento da linha de produção. Verifica-se que as estações de trabalho e equipamentos podem ser combinados de muitas maneiras diferentes; daí que a necessidade de efectuar o balanceamento das linhas de produção implique a distribuição de actividades sequenciais por postos de trabalho de modo a permitir uma elevada utilização de trabalho e de equipamentos e a minimizar o tempo de vazio. Os problemas de balanceamento de linhas são tipicamente problemas complexos de tratar, devido ao elevado número de combinações possíveis. Entre os métodos utilizados para resolver estes problemas encontram-se métodos de tentativa e erro, métodos heurísticos, métodos computacionais de avaliação de diferentes opções até se encontrar uma boa solução e métodos de optimização. O objectivo deste trabalho passou pelo desenvolvimento de uma ferramenta computacional para efectuar o balanceamento de linhas de produção recorrendo a algoritmos genéticos. Foi desenvolvida uma aplicação que implementa dois algoritmos genéticos, um primeiro que obtém soluções para o problema e um segundo que optimiza essas soluções, associada a uma interface gráfica em C# que permite a inserção do problema e a visualização de resultados. Obtiveram-se resultados exequíveis demonstrando vantagens em relação aos métodos heurísticos, pois é possível obter-se mais do que uma solução. Além disso, para problemas complexos torna-se mais prático o uso da aplicação desenvolvida. No entanto, esta aplicação permite no máximo seis precedências por cada operação e resultados com o máximo de nove estações de trabalho.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil
Resumo:
Muitas vezes é necessário trabalhar com variáveis categóricas, porem há um número restrito de análisesque as abordam. Uma boa técnica de segmentação é a grade of membership (GoM), muito utilizada na área médica, em psicologia e em sociologia. Essa metodologia possui uma interpretação interessante baseada em perfis extremos (segmentos) e grau de pertencimento. Porém o modelo possui grande complexidade de estimação dos parâmetros pormáxima verossimilhança. Assim, neste trabalho propõe-se o uso de algoritmos genéticos para diminuir a complexidade e o tempo de cálculo, e aumentar a acurácia. A técnica é nomeada de Genetics Algorithms grade of membership (GA-GoM). Para averiguar a efetividade, o modelo foi primeiramente abordado por simulação – foi executado um experimento fatorial levando em conta o número de segmentos e variáveis trabalhadas. Em seguida, foi abordado um caso prático de segmentação de engajamento em redes sociais. Os resultados são superiores para modelos de maior complexidade. Conclui-se, assim, que é útil a abordagem para grandes bases de dados que contenham dados categóricos.
Resumo:
A definição das parcelas familiares em projetos de reforma agrária envolve questões técnicas e sociais. Essas questões estão associadas principalmente às diferentes aptidões agrícolas do solo nestes projetos. O objetivo deste trabalho foi apresentar método para realizar o processo de ordenamento territorial em assentamentos de reforma agrária empregando Algoritmo Genético (AG). O AG foi testado no Projeto de Assentamento Veredas, em Minas Gerais, e implementado com base no sistema de aptidão agrícola das terras.
Resumo:
Peer-reviewed
Resumo:
Creació d’un sistema format per un algoritme genètic que permeti dissenyar de forma automática, les dades dels valors lingüístics d’un controlador fuzzy, per a un robot amb tracció diferencial. Les dades que s’han d’obtenir han de donar-li al robot, la capacitat d’arribar a un destí, evitant els obstacles que vagi trobant al llarg del camí
Resumo:
Genetic algorithm was used for variable selection in simultaneous determination of mixtures of glucose, maltose and fructose by mid infrared spectroscopy. Different models, using partial least squares (PLS) and multiple linear regression (MLR) with and without data pre-processing, were used. Based on the results obtained, it was verified that a simpler model (multiple linear regression with variable selection by genetic algorithm) produces results comparable to more complex methods (partial least squares). The relative errors obtained for the best model was around 3% for the sugar determination, which is acceptable for this kind of determination.