983 resultados para Algoritmos de aprendizagem
Resumo:
Este texto apresenta a tese de doutorado em Ciência da Computação na linha de pesquisa de Inteligência Artificial, dentro da área de IAD – Inteligência Artificial Distribuída (mais especificamente os Sistemas Multiagentes – SMA). O trabalho aborda a formação de grupos colaborativos em um ambiente multiagente interativo de aprendizagem na web, através da utilização de técnicas de Inteligência Artificial. O trabalho apresenta a definição e implementação de uma arquitetura de agentes modelados com algoritmos genéticos, integrada a um ambiente colaborativo de aprendizagem, o TelEduc. Inicialmente faz-se um breve estudo sobre as áreas envolvidas na tese: Informática na Educação, Educação a Distância, Inteligência Artificial, Inteligência Artificial Distribuída e Inteligência Artificial Aplicada à Educação. Abordam-se, também, as áreas de pesquisa que abrangem os Sistemas Multiagentes e os Algoritmos Genéticos. Após este estudo, apresenta-se um estudo comparativo entre ambientes de ensino e aprendizagem que utilizam a abordagem de agentes e a arquitetura proposta neste trabalho. Apresenta-se, também, a arquitetura de agentes proposta, integrada ao ambiente TelEduc, descrevendo-se o funcionamento de cada um dos agentes e a plataforma de desenvolvimento. Finalizando o trabalho, apresenta-se o foco principal do mesmo, a formação de grupos colaborativos, através da implementação e validação do agente forma grupo colaborativo. Este agente, implementado através de um algoritmo genético, permite a formação de grupos colaborativos seguindo os critérios estabelecidos pelo professor. A validação do trabalho foi realizada através de um estudo de caso, utilizando o agente implementado na formação de grupos colaborativos em quatro turmas de cursos superiores de Informática, na Região Metropolitana de Porto Alegre, em disciplinas que envolvem o ensino de programação de computadores.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This thesis addresses the Batch Reinforcement Learning methods in Robotics. This sub-class of Reinforcement Learning has shown promising results and has been the focus of recent research. Three contributions are proposed that aim to extend the state-of-art methods allowing for a faster and more stable learning process, such as required for learning in Robotics. The Q-learning update-rule is widely applied, since it allows to learn without the presence of a model of the environment. However, this update-rule is transition-based and does not take advantage of the underlying episodic structure of collected batch of interactions. The Q-Batch update-rule is proposed in this thesis, to process experiencies along the trajectories collected in the interaction phase. This allows a faster propagation of obtained rewards and penalties, resulting in faster and more robust learning. Non-parametric function approximations are explored, such as Gaussian Processes. This type of approximators allows to encode prior knowledge about the latent function, in the form of kernels, providing a higher level of exibility and accuracy. The application of Gaussian Processes in Batch Reinforcement Learning presented a higher performance in learning tasks than other function approximations used in the literature. Lastly, in order to extract more information from the experiences collected by the agent, model-learning techniques are incorporated to learn the system dynamics. In this way, it is possible to augment the set of collected experiences with experiences generated through planning using the learned models. Experiments were carried out mainly in simulation, with some tests carried out in a physical robotic platform. The obtained results show that the proposed approaches are able to outperform the classical Fitted Q Iteration.
Resumo:
Este trabalho propõe um estudo de sinais cerebrais aplicados em sistemas BCI (Brain-Computer Interface - Interfaces Cérebro Computador), através do uso de Árvores de Decisão e da análise dessas árvores com base nas Neurociências. Para realizar o tratamento dos dados são necessárias 5 fases: aquisição de dados, pré-processamento, extração de características, classificação e validação. Neste trabalho, todas as fases são contempladas. Contudo, enfatiza-se as fases de classificação e de validação. Na classificação utiliza-se a técnica de Inteligência Artificial denominada Árvores de Decisão. Essa técnica é reconhecida na literatura como uma das formas mais simples e bem sucedidas de algoritmos de aprendizagem. Já a fase de validação é realizada nos estudos baseados na Neurociência, que é um conjunto das disciplinas que estudam o sistema nervoso, sua estrutura, seu desenvolvimento, funcionamento, evolução, relação com o comportamento e a mente, e também suas alterações. Os resultados obtidos neste trabalho são promissores, mesmo sendo iniciais, visto que podem melhor explicar, com a utilização de uma forma automática, alguns processos cerebrais.
Resumo:
O curso proposto está dividido em sete capítulos que vão desde a apresentação da importância da análise de imagens em geologia até à discussão e aplicação de aprendizagem máquina na análise de imagens. Sou defensor do software livre, assim todos os programas utilizados neste curso caiem nesta categoria. Os exemplos apresentados serão demonstrados com recurso aos seguintes programas: QGIS – Sistemas de informação geográfica GIMP – Tratamento de imagens R - Cálculo RStudio – IDE para o R Anaconda Python Notebook – IDE para Python OpenCV – Visão computacional Pretendo que o curso para o qual este texto serve de suporte seja eminentemente prático, um curso de “mãos na massa”, esperando-se que cada participante possa tratar temas do seu interesse pessoal. No primeiro capítulo é feita uma introdução sobre o que são imagens e a sua importância em geologia. O segundo capítulo trata de descrever os passos para a instalação do software proposto e fornecer pequenos exemplos da sua utilização. O terceiro capítulo descreve os métodos e as limitações da aquisição das imagens. São dados alguns exemplos de funções de aquisição de imagens. Os exemplos práticos deste capítulo incluem exemplos em Python e R. O quarto capítulo fala dos parâmetros contidos num ficheiro de imagens. Neste capítulo são apresentados exemplos em Python. O quinto capítulo trata das ferramentas que se podem aplicar durante o préprocessamento de uma imagem. O sexto capítulo trata de mostrar alguns exemplos de análise de imagens e no sétimo capítulo é abordada a questão de utilização de algoritmos de aprendizagem máquina na análise de imagens.
Resumo:
Relatório da Prática de Ensino Supervisionada, Ensino de Informática, Universidade de Lisboa, 2013
Resumo:
The metaheuristics techiniques are known to solve optimization problems classified as NP-complete and are successful in obtaining good quality solutions. They use non-deterministic approaches to generate solutions that are close to the optimal, without the guarantee of finding the global optimum. Motivated by the difficulties in the resolution of these problems, this work proposes the development of parallel hybrid methods using the reinforcement learning, the metaheuristics GRASP and Genetic Algorithms. With the use of these techniques, we aim to contribute to improved efficiency in obtaining efficient solutions. In this case, instead of using the Q-learning algorithm by reinforcement learning, just as a technique for generating the initial solutions of metaheuristics, we use it in a cooperative and competitive approach with the Genetic Algorithm and GRASP, in an parallel implementation. In this context, was possible to verify that the implementations in this study showed satisfactory results, in both strategies, that is, in cooperation and competition between them and the cooperation and competition between groups. In some instances were found the global optimum, in others theses implementations reach close to it. In this sense was an analyze of the performance for this proposed approach was done and it shows a good performance on the requeriments that prove the efficiency and speedup (gain in speed with the parallel processing) of the implementations performed
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Esta pesquisa trata de uma experiência vivida com os alunos do curso de Tecnologia em Análise e Desenvolvimento de Sistemas do Centro Federal de Educação Tecnológica do Pará - CEFET sobre o aprendizado de algoritmos e programação. O presente estudo justifica-se pela relevância em se discutir a prática do profissional da área de informática que atua na educação profissional superior com o ensino de algoritmos. Embora haja concepções acerca dos obstáculos relacionados ao tema, há a necessidade de se investigar as dificuldades e fatores que contribuem com a aprendizagem de algoritmos e consequentemente de programação. Assim este trabalho se propõe a responder a seguinte questão? É possível melhorar o processo ensino-aprendizagem de algoritmos através da pedagogia de projetos? Com base nas observações levantadas, propomos e colocamos em prática um modelo de ensino baseado nesta pedagogia, com o objetivo de potencializar a compreensão de algoritmos. A metodologia adotada utilizou a pesquisa-ação no sentido de investigação colaborativa de observação na ação. Os fundamentos teóricos basearam-se na teoria de aprendizagem significativa de David Ausubel, nas propostas facilitadoras dessa aprendizagem por Postman e Weingartner, Marco Antônio Moreira e no Construcionismo de Papert. De um modo geral foram constatadas boas impressões com desenvolvimento do projeto especialmente por termos observado nos alunos maior motivação com a atividade de programação percebida pela autonomia e reflexão nas etapas de desenvolvimento do projeto.
Resumo:
Técnicas de otimização conhecidas como as metaheurísticas tem conseguido resolversatisfatoriamente problemas conhecidos, mas desenvolvimento das metaheurísticas écaracterizado por escolha de parâmetros para sua execução, na qual a opção apropriadadestes parâmetros (valores). Onde o ajuste de parâmetro é essencial testa-se os parâmetrosaté que resultados viáveis sejam obtidos, normalmente feita pelo desenvolvedor que estaimplementando a metaheuristica. A qualidade dos resultados de uma instância1 de testenão será transferida para outras instâncias a serem testadas e seu feedback pode requererum processo lento de “tentativa e erro” onde o algoritmo têm que ser ajustado para umaaplicação especifica. Diante deste contexto das metaheurísticas surgiu a Busca Reativaque defende a integração entre o aprendizado de máquina dentro de buscas heurísticaspara solucionar problemas de otimização complexos. A partir da integração que a BuscaReativa propõe entre o aprendizado de máquina e as metaheurísticas, surgiu a ideia dese colocar a Aprendizagem por Reforço mais especificamente o algoritmo Q-learning deforma reativa, para selecionar qual busca local é a mais indicada em determinado instanteda busca, para suceder uma outra busca local que não pode mais melhorar a soluçãocorrente na metaheurística VNS. Assim, neste trabalho propomos uma implementação reativa,utilizando aprendizado por reforço para o auto-tuning do algoritmo implementado,aplicado ao problema do caixeiro viajante simétrico e ao problema escalonamento sondaspara manutenção de poços.
Resumo:
No presente trabalho foram utilizados modelos de classificação para minerar dados relacionados à aprendizagem de Matemática e ao perfil de professores do ensino fundamental. Mais especificamente, foram abordados os fatores referentes aos educadores do Estado do Rio de Janeiro que influenciam positivamente e negativamente no desempenho dos alunos do 9 ano do ensino básico nas provas de Matemática. Os dados utilizados para extrair estas informações são disponibilizados pelo Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira que avalia o sistema educacional brasileiro em diversos níveis e modalidades de ensino, incluindo a Educação Básica, cuja avaliação, que foi foco deste estudo, é realizada pela Prova Brasil. A partir desta base, foi aplicado o processo de Descoberta de Conhecimento em Bancos de Dados (KDD - Knowledge Discovery in Databases), composto das etapas de preparação, mineração e pós-processamento dos dados. Os padrões foram extraídos dos modelos de classificação gerados pelas técnicas árvore de decisão, indução de regras e classificadores Bayesianos, cujos algoritmos estão implementados no software Weka (Waikato Environment for Knowledge Analysis). Além disso, foram aplicados métodos de grupos e uma metodologia para tornar as classes uniformemente distribuídas, afim de melhorar a precisão dos modelos obtidos. Os resultados apresentaram importantes fatores que contribuem para o ensino-aprendizagem de Matemática, assim como evidenciaram aspectos que comprometem negativamente o desempenho dos discentes. Por fim, os resultados extraídos fornecem ao educador e elaborador de políticas públicas fatores para uma análise que os auxiliem em posteriores tomadas de decisão.
Resumo:
A domótica é uma área com grande interesse e margem de exploração, que pretende alcançar a gestão automática e autónoma de recursos habitacionais, proporcionando um maior conforto aos utilizadores. Para além disso, cada vez mais se procuram incluir benefícios económicos e ambientais neste conceito, por forma a garantir um futuro sustentável. O aquecimento de água (por meios elétricos) é um dos fatores que mais contribui para o consumo de energia total de uma residência. Neste enquadramento surge o tema “algoritmos inteligentes de baixa complexidade”, com origem numa parceria entre o Departamento de Eletrónica, Telecomunicações e Informática (DETI) da Universidade de Aveiro e a Bosch Termotecnologia SA, que visa o desenvolvimento de algoritmos ditos “inteligentes”, isto é, com alguma capacidade de aprendizagem e funcionamento autónomo. Os algoritmos devem ser adaptados a unidades de processamento de 8 bits para equipar pequenos aparelhos domésticos, mais propriamente tanques de aquecimento elétrico de água. Uma porção do desafio está, por isso, relacionada com as restrições computacionais de microcontroladores de 8 bits. No caso específico deste trabalho, foi determinada a existência de sensores de temperatura da água no tanque como a única fonte de informação externa aos algoritmos, juntamente com parâmetros pré-definidos pelo utilizador que estabelecem os limiares de temperatura máxima e mínima da água. Partindo deste princípio, os algoritmos desenvolvidos baseiam-se no perfil de consumo de água quente, observado ao longo de cada semana, para tentar prever futuras tiragens de água e, consequentemente, agir de forma adequada, adiantando ou adiando o aquecimento da água do tanque. O objetivo é alcançar uma gestão vantajosa entre a economia de energia e o conforto do utilizador (água quente), isto sem que exista necessidade de intervenção direta por parte do utilizador final. A solução prevista inclui também o desenvolvimento de um simulador que permite observar, avaliar e comparar o desempenho dos algoritmos desenvolvidos.