982 resultados para Algebraische Geometrie, Computer Algebra
Resumo:
1. Teil: Bekannte Konstruktionen. Die vorliegende Arbeit gibt zunächst einen ausführlichen Überblick über die bisherigen Entwicklungen auf dem klassischen Gebiet der Hyperflächen mit vielen Singularitäten. Die maximale Anzahl mu^n(d) von Singularitäten auf einer Hyperfläche vom Grad d im P^n(C) ist nur in sehr wenigen Fällen bekannt, im P^3(C) beispielsweise nur für d<=6. Abgesehen von solchen Ausnahmen existieren nur obere und untere Schranken. 2. Teil: Neue Konstruktionen. Für kleine Grade d ist es oft möglich, bessere Resultate zu erhalten als jene, die durch allgemeine Schranken gegeben sind. In dieser Arbeit beschreiben wir einige algorithmische Ansätze hierfür, von denen einer Computer Algebra in Charakteristik 0 benutzt. Unsere anderen algorithmischen Methoden basieren auf einer Suche über endlichen Körpern. Das Liften der so experimentell gefundenen Hyperflächen durch Ausnutzung ihrer Geometrie oder Arithmetik liefert beispielsweise eine Fläche vom Grad 7 mit $99$ reellen gewöhnlichen Doppelpunkten und eine Fläche vom Grad 9 mit 226 gewöhnlichen Doppelpunkten. Diese Konstruktionen liefern die ersten unteren Schranken für mu^3(d) für ungeraden Grad d>5, die die allgemeine Schranke übertreffen. Unser Algorithmus hat außerdem das Potential, auf viele weitere Probleme der algebraischen Geometrie angewendet zu werden. Neben diesen algorithmischen Methoden beschreiben wir eine Konstruktion von Hyperflächen vom Grad d im P^n mit vielen A_j-Singularitäten, j>=2. Diese Beispiele, deren Existenz wir mit Hilfe der Theorie der Dessins d'Enfants beweisen, übertreffen die bekannten unteren Schranken in den meisten Fällen und ergeben insbesondere neue asymptotische untere Schranken für j>=2, n>=3. 3. Teil: Visualisierung. Wir beschließen unsere Arbeit mit einer Anwendung unserer neuen Visualisierungs-Software surfex, die die Stärken mehrerer existierender Programme bündelt, auf die Konstruktion affiner Gleichungen aller 45 topologischen Typen reeller kubischer Flächen.
Resumo:
We report on an elementary course in ordinary differential equations (odes) for students in engineering sciences. The course is also intended to become a self-study package for odes and is is based on several interactive computer lessons using REDUCE and MATHEMATICA . The aim of the course is not to do Computer Algebra (CA) by example or to use it for doing classroom examples. The aim ist to teach and to learn mathematics by using CA-systems.
Resumo:
Se presentan dos investigaciones sobre la enseñanza y el aprendizaje de la integral definida y la integral impropia. Se destacan los aspectos relacionados con el uso de los CAS (Computer Algebra System) Derive y Maple. Se hace incapié en el papel que ha jugado cada uno de ellos en la investigación.
Resumo:
We consider a procedure for obtaining a compact fourth order method to the steady 2D Navier-Stokes equations in the streamfunction formulation using the computer algebra system Maple. The resulting code is short and from it we obtain the Fortran program for the method. To test the procedure we have solved many cavity-type problems which include one with an analytical solution and the results are compared with results obtained by second order central differences to moderate Reynolds numbers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We generalize a procedure proposed by Mancera and Hunt [P.F.A. Mancera, R. Hunt, Some experiments with high order compact methods using a computer algebra software-Part 1, Appl. Math. Comput., in press, doi: 10.1016/j.amc.2005.05.015] for obtaining a compact fourth-order method to the steady 2D Navier-Stokes equations in the streamfunction formulation-vorticity using the computer algebra system Maple, which includes conformal mappings and non-uniform grids. To analyse the procedure we have solved a constricted stepped channel problem, where a fine grid is placed near the re-entrant corner by transformation of the independent variables. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The increasing precision of current and future experiments in high-energy physics requires a likewise increase in the accuracy of the calculation of theoretical predictions, in order to find evidence for possible deviations of the generally accepted Standard Model of elementary particles and interactions. Calculating the experimentally measurable cross sections of scattering and decay processes to a higher accuracy directly translates into including higher order radiative corrections in the calculation. The large number of particles and interactions in the full Standard Model results in an exponentially growing number of Feynman diagrams contributing to any given process in higher orders. Additionally, the appearance of multiple independent mass scales makes even the calculation of single diagrams non-trivial. For over two decades now, the only way to cope with these issues has been to rely on the assistance of computers. The aim of the xloops project is to provide the necessary tools to automate the calculation procedures as far as possible, including the generation of the contributing diagrams and the evaluation of the resulting Feynman integrals. The latter is based on the techniques developed in Mainz for solving one- and two-loop diagrams in a general and systematic way using parallel/orthogonal space methods. These techniques involve a considerable amount of symbolic computations. During the development of xloops it was found that conventional computer algebra systems were not a suitable implementation environment. For this reason, a new system called GiNaC has been created, which allows the development of large-scale symbolic applications in an object-oriented fashion within the C++ programming language. This system, which is now also in use for other projects besides xloops, is the main focus of this thesis. The implementation of GiNaC as a C++ library sets it apart from other algebraic systems. Our results prove that a highly efficient symbolic manipulator can be designed in an object-oriented way, and that having a very fine granularity of objects is also feasible. The xloops-related parts of this work consist of a new implementation, based on GiNaC, of functions for calculating one-loop Feynman integrals that already existed in the original xloops program, as well as the addition of supplementary modules belonging to the interface between the library of integral functions and the diagram generator.
Resumo:
A previously presented algorithm for the reconstruction of bremsstrahlung spectra from transmission data has been implemented into MATHEMATICA. Spectra vectorial algebra has been used to solve the matrix system A * F = T. The new implementation has been tested by reconstructing photon spectra from transmission data acquired in narrow beam conditions, for nominal energies of 6, 15, and 25 MV. The results were in excellent agreement with the original calculations. Our implementation has the advantage to be based on a well-tested mathematical kernel. Furthermore it offers a comfortable user interface.
Resumo:
A toolbox is a set of procedures taking advantage of the computing power and graphical capacities of a CAS. With these procedures the students can solve math problems, apply mathematics to engineering or simply reinforce the learning of certain mathematical concepts. From the point of view of their construction, we can consider two types of toolboxes: (i) the closed box, built by the teacher, in which the utility files are provided to the students together with the respective tutorials and several worksheets with proposed exercises and problems,
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
This article presents the principal results of the doctoral thesis “Direct Operational Methods in the Environment of a Computer Algebra System” by Margarita Spiridonova (Institute of mathematics and Informatics, BAS), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 23 March, 2009.
Resumo:
Reasoning systems have reached a high degree of maturity in the last decade. However, even the most successful systems are usually not general purpose problem solvers but are typically specialised on problems in a certain domain. The MathWeb SOftware Bus (Mathweb-SB) is a system for combining reasoning specialists via a common osftware bus. We described the integration of the lambda-clam systems, a reasoning specialist for proofs by induction, into the MathWeb-SB. Due to this integration, lambda-clam now offers its theorem proving expertise to other systems in the MathWeb-SB. On the other hand, lambda-clam can use the services of any reasoning specialist already integrated. We focus on the latter and describe first experimnents on proving theorems by induction using the computational power of the MAPLE system within lambda-clam.