1000 resultados para Algebraic fields


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this thesis is to study the distribution of the number of principal ideals generated by an irreducible element in an algebraic number field, namely in the non-unique factorization ring of integers of such a field. In particular we are investigating the size of M(x), defined as M ( x ) =∑ (α) α irred.|N (α)|≤≠ 1, where x is any positive real number and N (α) is the norm of α. We finally obtain asymptotic results for hl(x).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bibliography: p. 251-259.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects - as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge in wireless communications is overcoming the deleterious effects of fading, a phenomenon largely responsible for the seemingly inevitable dropped call. Multiple-antennas communication systems, commonly referred to as MIMO systems, employ multiple antennas at both transmitter and receiver, thereby creating a multitude of signalling pathways between transmitter and receiver. These multiple pathways give the signal a diversity advantage with which to combat fading. Apart from helping overcome the effects of fading, MIMO systems can also be shown to provide a manyfold increase in the amount of information that can be transmitted from transmitter to receiver. Not surprisingly,MIMO has played, and continues to play, a key role in the advancement of wireless communication.Space-time codes are a reference to a signalling format in which information about the message is dispersed across both the spatial (or antenna) and time dimension. Algebraic techniques drawing from algebraic structures such as rings, fields and algebras, have been extensively employed in the construction of optimal space-time codes that enable the potential of MIMO communication to be realized, some of which have found their way into the IEEE wireless communication standards. In this tutorial article, reflecting the authors’interests in this area, we survey some of these techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a method for the calculation of two-dimensional elastic fields in a solid containing any number of inhomogeneities under arbitrary far field loadings. The method called 'pseudo-dislocations method', is illustrated for the solution of interacting elliptic inhomogeneities. It reduces the interacting inhomogeneities problem to a set of linear algebraic equations. Numerical results are presented for a variety of elliptic inhomogeneity arrangements, including the special cases of elliptic holes, cracks and circular inhomogeneities. All these complicated problems can be solved with high accuracy and efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of codes, classically motivated by the need to communicate information reliably in the presence of error, has found new life in fields as diverse as network communication, distributed storage of data, and even has connections to the design of linear measurements used in compressive sensing. But in all contexts, a code typically involves exploiting the algebraic or geometric structure underlying an application. In this thesis, we examine several problems in coding theory, and try to gain some insight into the algebraic structure behind them.

The first is the study of the entropy region - the space of all possible vectors of joint entropies which can arise from a set of discrete random variables. Understanding this region is essentially the key to optimizing network codes for a given network. To this end, we employ a group-theoretic method of constructing random variables producing so-called "group-characterizable" entropy vectors, which are capable of approximating any point in the entropy region. We show how small groups can be used to produce entropy vectors which violate the Ingleton inequality, a fundamental bound on entropy vectors arising from the random variables involved in linear network codes. We discuss the suitability of these groups to design codes for networks which could potentially outperform linear coding.

The second topic we discuss is the design of frames with low coherence, closely related to finding spherical codes in which the codewords are unit vectors spaced out around the unit sphere so as to minimize the magnitudes of their mutual inner products. We show how to build frames by selecting a cleverly chosen set of representations of a finite group to produce a "group code" as described by Slepian decades ago. We go on to reinterpret our method as selecting a subset of rows of a group Fourier matrix, allowing us to study and bound our frames' coherences using character theory. We discuss the usefulness of our frames in sparse signal recovery using linear measurements.

The final problem we investigate is that of coding with constraints, most recently motivated by the demand for ways to encode large amounts of data using error-correcting codes so that any small loss can be recovered from a small set of surviving data. Most often, this involves using a systematic linear error-correcting code in which each parity symbol is constrained to be a function of some subset of the message symbols. We derive bounds on the minimum distance of such a code based on its constraints, and characterize when these bounds can be achieved using subcodes of Reed-Solomon codes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of chemical mechanism that can exhibit oscillatory phenomena in reaction networks are currently of intense interest. In particular, the parametric question of the existence of Hopf bifurcations has gained increasing popularity due to its relation to the oscillatory behavior around the fixed points. However, the detection of oscillations in high-dimensional systems and systems with constraints by the available symbolic methods has proven to be difficult. The development of new efficient methods are therefore required to tackle the complexity caused by the high-dimensionality and non-linearity of these systems. In this thesis, we mainly present efficient algorithmic methods to detect Hopf bifurcation fixed points in (bio)-chemical reaction networks with symbolic rate constants, thereby yielding information about their oscillatory behavior of the networks. The methods use the representations of the systems on convex coordinates that arise from stoichiometric network analysis. One of the methods called HoCoQ reduces the problem of determining the existence of Hopf bifurcation fixed points to a first-order formula over the ordered field of the reals that can then be solved using computational-logic packages. The second method called HoCaT uses ideas from tropical geometry to formulate a more efficient method that is incomplete in theory but worked very well for the attempted high-dimensional models involving more than 20 chemical species. The instability of reaction networks may lead to the oscillatory behaviour. Therefore, we investigate some criterions for their stability using convex coordinates and quantifier elimination techniques. We also study Muldowney's extension of the classical Bendixson-Dulac criterion for excluding periodic orbits to higher dimensions for polynomial vector fields and we discuss the use of simple conservation constraints and the use of parametric constraints for describing simple convex polytopes on which periodic orbits can be excluded by Muldowney's criteria. All developed algorithms have been integrated into a common software framework called PoCaB (platform to explore bio- chemical reaction networks by algebraic methods) allowing for automated computation workflows from the problem descriptions. PoCaB also contains a database for the algebraic entities computed from the models of chemical reaction networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present results for the systematic study of reversible-equivariant vector fields - namely, in the simultaneous presence of symmetries and reversing symmetries - by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincare series and their associated Molien formulae are introduced,and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants. (C) 2008 Elsevier B.V, All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent algebraic attacks on LFSR-based stream ciphers and S-boxes have generated much interest as they appear to be extremely powerful. Theoretical work has been developed focusing around the Boo- lean function case. In this paper, we generalize this theory to arbitrary finite fields and extend the theory of annihilators and ideals introduced at Eurocrypt 2004 by Meier, Pasalic and Carlet. In particular, we prove that for any function f in the multivariate polynomial ring over GF(q), f has a low degree multiple precisely when two low degree functions appear in the same coset of the annihilator of f q – 1 – 1. In this case, many such low degree multiples exist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we review some basic relations of algebraic K theory and we formulate them in the language of D-branes. Then we study the relation between the D8-branes wrapped on an orientable, compact manifold W in a massive Type IIA, supergravity background and the M9-branes wrapped on a compact manifold Z in a massive d = 11 supergravity background from the K-theoretic point of view. By interpreting the D8-brane charges as elements of K-0(C(W)) and the (inequivalent classes of) spaces of gauge fields on the M9-branes as the elements of K-0(C(Z) x ((k) over bar*) G) where G is a one-dimensional compact group, a connection between charges and gauge fields is argued to exists. This connection could be realized as a composition map between the corresponding algebraic K theory groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cosmological constant is shown to have an algebraic meaning: it is essentially an eigenvalue of a Casimir invariant of the Lorentz group acting on the spaces tangent to every spacetime. This is found in the context of de Sitter spacetimes, for which the Einstein equation is a relation between operators. Nevertheless, the result brings, to the foreground the skeleton algebraic structure underlying the geometry of general physical spacetimes. which differ from one another by the fleshening of that structure by different tetrad fields.