918 resultados para Aldose Reductase Inhibitor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the temporal course of corneal sensitivity loss & the role of aldose reductase inhibitors (ARI) in an animal model of diabetic ocular complications. Methods: Weanling male S-D rats were randomly grouped to received ad libitum water & diet consisting of Purina (#5001) w/ either: 50% starch (CON,n=15) or 50% D-galactose (GAL,n=30). Half the galactosemic rats (ARI,n=15) received topical 0.25% CT-112 (3x daily, 20µl, Senju Pharmaceutical Co., Japan). Control & remaining half of the galactosemic animals received equivalent doses of saline eyedrops. Rats were restrained w/o medication during sensitivity measurements conducted w/ a Cochet-Bonnet Aesthesiometer mounted on a micromanipulator. The end of the filament (0.012mm dia.), which applied a mean pressure of 0.96 g/mm perpendicular to the corneal surface at center, was in the plane of focus of a slit-lamp biomicroscope. Measurements were conducted by two investigators which were masked to the treatment group. The average blink-responses from 10 consecutive stimuli to each cornea were expressed as a percent. Results: Mean (±SD) baseline corneal sensitivity in all groups were similar (CON 73%±11, GAL 71%±15, ARI 74%±16). Corneal sensitivity in the galactosemic rat was decreased (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenolic marine natural product is a kind of new potential aldose reductase inhibitors (ARIs). In order to investigate the binding mode and inhibition mechanism, molecular docking and dynamics studies were performed to explore the interactions of six phenolic inhibitors with human aldose reductase (hALR2). Considering physiological environment, all the neutral and other two ionized states of each phenolic inhibitor were adopted in the simulation. The calculations indicate that all the inhibitors are able to form stable hydrogen bonds with the hALR2 active pocket which is mainly constructed by residues TYR48, HIS110 and TRP111, and they impose the inhibition effect by occupying the active space. In all inhibitors, only La and its two ionized derivatives La_ion1 and La_ion2, in which neither of the ortho-hydrogens of 3-hydroxyl is substituted by Br, bind with hALR2 active residues using the terminal 3-hydroxyl. While, all the other inhibitors, at least one of whose ortho-sites of 3- and 6-hydroxyls are substituted by Br substituent which take much electron-withdrawing effect and steric hindrance, bind with hALR2 through the lactone group. This means that the Br substituent can effectively regulate the binding modes of phenolic inhibitors. Although the lactone bound inhibitors have relatively high RMSD values, our dynamics study shows that both binding modes are of high stability. For each inhibitor molecule, the ionization does not change its original binding mode, but it does gradually increase the binding free energy, which reveals that besides hydrogen bonds, the electrostatic effect is also important to the inhibitor–hALR2 interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to explore the inhibitory mechanism of coumarins toward aldose reductase (ALR2), AutoDock and Gromacs software were used for docking and molecular dynamics studies on 14 coumarins (CM) and ALR2 protease. The docking results indicate that residues TYR48, HIS110, and TRP111 construct the active pocket of ALR2 and, besides van der Waals and hydrophobic interaction, CM mainly interact with ALR2 by forming hydrogen bonds to cause inhibitory behavior. Except for CM1, all the other coumarins take the lactone part as acceptor to build up the hydrogen bond network with active-pocket residues. Unlike CM3, which has two comparable binding modes with ALR2, most coumarins only have one dominant orientation in their binding sites. The molecular dynamics calculation, based on the docking results, implies that the orientations of CM in the active pocket show different stabilities. Orientation of CM1 and CM3a take an unstable binding mode with ALR2; their conformations and RMSDs relative to ALR2 change a lot with the dynamic process. While the remaining CM are always hydrogen-bonded with residues TYR48 and HIS110 through the carbonyl O atom of the lactone group during the whole process, they retain the original binding mode and gradually reach dynamic equilibrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the association between polymorphisms of the aldose reductase gene and diabetic nephropathy in both Type 1 and Type 2 diabetes mellitus, and to carry out a meta-analysis of published results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The incidence of delirium in ventilated patients is estimated at up to 82%, and it is associated with longer intensive care and hospital stays, and long-term cognitive impairment and mortality. The pathophysiology of delirium has been linked with inflammation and neuronal apoptosis. Simvastatin has pleiotropic properties; it penetrates the brain and, as well as reducing cholesterol, reduces inflammation when used at clinically relevant doses over the short term. This is a single centre randomised, controlled trial which aims to test the hypothesis that treatment with simvastatin will modify delirium incidence and outcomes. 

Methods/Design: The ongoing study will include 142 adults admitted to the Watford General Hospital Intensive Care Unit who require mechanical ventilation in the first 72 hours of admission. The primary outcome is the number of delirium- and coma-free days in the first 14 days. Secondary outcomes include incidence of delirium, delirium- and coma-free days in the first 28 days, days in delirium and in coma at 14 and 28 days, number of ventilator-free days at 28 days, length of critical care and hospital stay, mortality, cognitive decline and healthcare resource use. Informed consent will be taken from patient's consultee before randomisation to receive either simvastatin (80 mg) or placebo once daily. Daily data will be recorded until day 28 after randomisation or until discharge from the ICU if sooner. Surviving patients will be followed up on at six months from discharge. Plasma and urine samples will be taken to investigate the biological effect of simvastatin on systemic markers of inflammation, as related to the number of delirium- and coma-free days, and the potential of cholinesterase activity and beta-amyloid as predictors of the risk of delirium and long-term cognitive impairment. 

Discussion: This trial will test the efficacy of simvastatin on reducing delirium in the critically ill. If patients receiving the statin show a reduced number of days in delirium compared with the placebo group, the inflammatory theory implicated in the pathogenesis of delirium will be strengthened. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetic studies on the AR (aldose reductase) protein have shown that it does not behave as a classical enzyme in relation to ring aldose sugars. As with non-enzymatic glycation reactions, there is probably a free radical element involved derived from monosaccharide autoxidation. in the case of AR, there is free radical oxidation of NADPH by autoxidizing monosaccharides, which is enhanced in the presence of the NADPH-binding protein. Thus any assay for AR based on the oxidation of NADPH in the presence of autoxidizing monosaccharides is invalid, and tissue AR measurements based on this method are also invalid, and should be reassessed. AR exhibits broad specificity for both hydrophilic and hydrophobic aldehydes that suggests that the protein may be involved in detoxification. The last thing we would want to do is to inhibit it. ARIs (AR inhibitors) have a number of actions in the cell which are not specific, and which do not involve them binding to AR. These include peroxy-radical scavenging and effects of metal ion chelation. The AR/ARI story emphasizes the importance of correct experimental design in all biocatalytic experiments. Developing the use of Bayesian utility functions, we have used a systematic method to identify the optimum experimental designs for a number of kinetic model data sets. This has led to the identification of trends between kinetic model types, sets of design rules and the key conclusion that such designs should be based on some prior knowledge of K-m and/or the kinetic model. We suggest an optimal and iterative method for selecting features of the design such as the substrate range, number of measurements and choice of intermediate points. The final design collects data suitable for accurate modelling and analysis and minimizes the error in the parameters estimated, and is suitable for simple or complex steady-state models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand the changes in the metabolome of hepatitis C virus (HCV)-infected persons, we conducted a metabolomic investigation in both plasma and urine of 30 HCV-positive individuals using plasmas from 30 HCV-negative blood donors and urines from 30 healthy volunteers. Samples were analysed by gas chromatography-mass spectrometry and data subjected to multivariate analysis. The plasma metabolomic phenotype of HCV-positive persons was found to have elevated glucose, mannose and oleamide, together with depressed plasma lactate. The urinary metabolomic phenotype of HCV-positive persons comprised reduced excretion of fructose and galactose combined with elevated urinary excretion of 6-deoxygalactose (fucose) and the polyols sorbitol, galactitol and xylitol. HCV-infected persons had elevated galactitol/galactose and sorbitol/glucose urinary ratios, which were highly correlated. These observations pointed to enhanced aldose reductase activity, and this was confirmed by real-time quantitative polymerase chain reaction with AKR1B10 gene expression elevated sixfold in the liver. In contrast, AKR1B1 gene expression was reduced 40% in HCV-positive livers. Interestingly, persons who were formerly HCV infected retained the metabolomic phenotype of HCV infection without reverting to the HCV-negative metabolomic phenotype. This suggests that the effects of HCV on hepatic metabolism may be long lived. Hepatic AKR1B10 has been reported to be elevated in hepatocellular carcinoma and in several premalignant liver diseases. It would appear that HCV infection alone increases AKR1B10 expression, which manifests itself as enhanced urinary excretion of polyols with reduced urinary excretion of their corresponding hexoses. What role the polyols play in hepatic pathophysiology of HCV infection and its sequelae is currently unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentration of urea in renal medullary cells is high enough to affect enzymes seriously by reducing Vmax or raising Km, yet the cells survive and function. The usual explanation is that the methylamines found in the renal medulla, namely glycerophosphocholine and betaine, have actions opposite to those of urea and thus counteract its effects. However, urea and methylamines have the similar (not counteracting) effects of reducing both the Km and Vmax of aldose reductase (EC 1.1.1.21), an enzyme whose function is important in renal medullas. Therefore, we examined factors that might determine whether counteraction occurs, namely different combinations of assay conditions (pH and salt concentration), methylamines (glycerophosphocholine, betaine, and trimethylamine N-oxide), substrates (dl-glyceraldehyde and d-xylose), and a mutation in recombinant aldose reductase protein (C298A). We find that Vmax of both wild-type and C298A mutant generally is reduced by urea and/or the methylamines. However, the effects on Km are much more complex, varying widely with the combination of conditions. At one extreme, we find a reduction of Km of wild-type enzyme by urea and/or methylamines that is partially additive, whereas at the other extreme we find that urea raises Km for d-xylose of the C298A mutant, betaine lowers the Km, and the two counteract in a classical fashion so that at a 2:1 molar ratio of betaine to urea there is no net effect. We conclude that counteraction of urea effects on enzymes by methylamines can depend on ion concentration, pH, the specific methylamine and substrate, and identity of even a single amino acid in the enzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldose reductase (EC 1.1.1.21) catalyzes the NADPH-mediated conversion of glucose to sorbitol. The hyperglycemia of diabetes increases sorbitol production primarily through substrate availability and is thought to contribute to the pathogenesis of many diabetic complications. Increased sorbitol production can also occur at normoglycemic levels via rapid increases in aldose reductase transcription and expression, which have been shown to occur upon exposure of many cell types to hyperosmotic conditions. The induction of aldose reductase transcription and the accumulation of sorbitol, an organic osmolyte, have been shown to be part of the physiological osmoregulatory mechanism whereby renal tubular cells adjust to the intraluminal hyperosmolality during urinary concentration. Previously, to explore the mechanism regulating aldose reductase levels, we partially characterized the human aldose reductase gene promoter present in a 4.2-kb fragment upstream of the transcription initiation start site. A fragment (-192 to +31 bp) was shown to contain several elements that control the basal expression of the enzyme. In this study, we examined the entire 4.2-kb human AR gene promoter fragment by deletion mutagenesis and transfection studies for the presence of osmotic response enhancer elements. An 11-bp nucleotide sequence (TGGAAAATTAC) was located 3.7 kb upstream of the transcription initiation site that mediates hypertonicity-responsive enhancer activity. This osmotic response element (ORE) increased the expression of the chloramphenicol acetyltransferase reporter gene product 2-fold in transfected HepG2 cells exposed to hypertonic NaCl media as compared with isoosmotic media. A more distal homologous sequence is also described; however, this sequence has no osmotic enhancer activity in transfected cells. Specific ORE mutant constructs, gel shift, and DNA fragment competition studies confirm the nature of the element and identify specific nucleotides essential for enhancer activity. A plasmid construct containing three repeat OREs and a heterologous promoter increased expression 8-fold in isoosmotic media and an additional 4-fold when the transfected cells are subjected to hyperosmotic stress (total approximately 30-fold). These findings will permit future studies to identify the transcription factors involved in the normal regulatory response mechanism to hypertonicity and to identify whether and how this response is altered in a variety of pathologic states, including diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of a diabetic cardiomyopathy, independent of hypertension and coronary artery disease, is still controversial. This systematic review seeks to evaluate the evidence for the existence of this condition, to clarify the possible mechanisms responsible, and to consider possible therapeutic implications. The existence of a diabetic cardiomyopathy is supported by epidemiological findings showing the association of diabetes with heart failure; clinical studies confirming the association of diabetes with left ventricular dysfunction independent of hypertension, coronary artery disease, and other heart disease; and experimental evidence of myocardial structural and functional changes. The most important mechanisms of diabetic cardiomyopathy are metabolic disturbances (depletion of glucose transporter 4, increased free fatty acids, carnitine deficiency, changes in calcium homeostasis), myocardial fibrosis (association with increases in angiotensin II, IGF-I, and inflammatory cytokines), small vessel disease (microangiopathy, impaired coronary flow reserve, and endothelial dysfunction), cardiac autonomic neuropathy (denervation and alterations in myocardial catecholamine levels), and insulin resistance (hyperinsulinemia and reduced insulin sensitivity). This review presents evidence that diabetes is associated with a cardiomyopathy, independent of comorbid conditions, and that metabolic disturbances, myocardial fibrosis, small vessel disease, cardiac autonomic neuropathy, and insulin resistance may all contribute to the development of diabetic heart disease.