979 resultados para Air Pollution Mathematical models
Resumo:
Objective: Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. Methods: We analyzed the Swiss National Cohort, which includes geocoded information on residence. Exposure to aircraft noise and air pollution was determined based on geospatial noise and air-pollution (PM10) models and distance to major roads. We used Cox proportional hazard models, with age as the timescale. We compared the risk of death across categories of A-weighted sound pressure levels (dB(A)) and by duration of living in exposed corridors, adjusting for PM10 levels, distance to major roads, sex, education, and socioeconomic position of the municipality. Results: We analyzed 4.6 million persons older than 30 years who were followed from near the end of 2000 through December 2005, including 15,532 deaths from myocardial infarction (ICD-10 codes I 21, I 22). Mortality increased with increasing level and duration of aircraft noise. The adjusted hazard ratio comparing ≥60 dB(A) with <45 dB(A) was 1.3 (95% confidence interval = 0.96-1.7) overall, and 1.5 (1.0-2.2) in persons who had lived at the same place for at least 15 years. None of the other endpoints (mortality from all causes, all circulatory disease, cerebrovascular disease, stroke, and lung cancer) was associated with aircraft noise. Conclusion: Aircraft noise was associated with mortality from myocardial infarction, with a dose-response relationship for level and duration of exposure. The association does not appear to be explained by exposure to particulate matter air pollution, education, or socioeconomic status of the municipality.
Resumo:
Time series models relating short-term changes in air pollution levels to daily mortality counts typically assume that the effects of air pollution on the log relative rate of mortality do not vary with time. However, these short-term effects might plausibly vary by season. Changes in the sources of air pollution and meteorology can result in changes in characteristics of the air pollution mixture across seasons. The authors develop Bayesian semi-parametric hierarchical models for estimating time-varying effects of pollution on mortality in multi-site time series studies. The methods are applied to the updated National Morbidity and Mortality Air Pollution Study database for the period 1987--2000, which includes data for 100 U.S. cities. At the national level, a 10 micro-gram/m3 increase in PM(10) at lag 1 is associated with a 0.15 (95% posterior interval: -0.08, 0.39),0.14 (-0.14, 0.42), 0.36 (0.11, 0.61), and 0.14 (-0.06, 0.34) percent increase in mortality for winter, spring, summer, and fall, respectively. An analysis by geographical regions finds a strong seasonal pattern in the northeast (with a peak in summer) and little seasonal variation in the southern regions of the country. These results provide useful information for understanding particle toxicity and guiding future analyses of particle constituent data.
Resumo:
The deteriorating air quality especially in urban environments is a cause of serious concern. In spite of being an effective sink, the atmosphere also has its own limitations in effectively dispersing the pollutants being dumped into it continuously by various sources, mainly industries. Many a time, it is not the higher emissions that cause alarming level of pollutants but the unfavourable atmospheric conditions under which the atmosphere is not able to disperse them effectively, leading to accumulation of pollutants near the ground. Hence, it is imperative to have an estimate of the atmospheric potential for dispersal of the substances emitted into it. This requires a knowledge of mixing height, ventilation coefficient, wind and stability of the region under study. Mere estimation of such pollution potential is not adequate, unless the probable distribution of concentration of pollutants is known. This can be obtained by means of mathematical models. The pollution potential coupled with the distribution of concentration provides a good basis for initiating steps to mitigate air pollution in any developing urban area. In this thesis, a fast developing industrial city, namely, Trivandrum is chosen for estimating the pollution potential and determining the spatial distribution of sulphur dioxide concentration. Each of the parameters required for pollution potential is discussed in detail separately. The thesis is divided into nine chapters.
Resumo:
Splitting techniques are commonly used when large-scale models, which appear in different fields of science and engineering, are treated numerically. Four types of splitting procedures are defined and discussed. The problem of the choice of a splitting procedure is investigated. Several numerical tests, by which the influence of the splitting errors on the accuracy of the results is studied, are given. It is shown that the splitting errors decrease linearly when (1) the splitting procedure is of first order and (2) the splitting errors are dominant. Three examples for splitting procedures used in all large-scale air pollution models are presented. Numerical results obtained by a particular air pollution model, Unified Danish Eulerian Model (UNI-DEM), are given and analysed.
Weibull and generalised exponential overdispersion models with an application to ozone air pollution
Resumo:
We consider the problem of estimating the mean and variance of the time between occurrences of an event of interest (inter-occurrences times) where some forms of dependence between two consecutive time intervals are allowed. Two basic density functions are taken into account. They are the Weibull and the generalised exponential density functions. In order to capture the dependence between two consecutive inter-occurrences times, we assume that either the shape and/or the scale parameters of the two density functions are given by auto-regressive models. The expressions for the mean and variance of the inter-occurrences times are presented. The models are applied to the ozone data from two regions of Mexico City. The estimation of the parameters is performed using a Bayesian point of view via Markov chain Monte Carlo (MCMC) methods.
Resumo:
Transportation Department, Office of the Assistant Secretary for Systems Development and Technology, Washington, D.C.
Resumo:
Mathematical models are increasingly used in environmental science thus increasing the importance of uncertainty and sensitivity analyses. In the present study, an iterative parameter estimation and identifiability analysis methodology is applied to an atmospheric model – the Operational Street Pollution Model (OSPMr). To assess the predictive validity of the model, the data is split into an estimation and a prediction data set using two data splitting approaches and data preparation techniques (clustering and outlier detection) are analysed. The sensitivity analysis, being part of the identifiability analysis, showed that some model parameters were significantly more sensitive than others. The application of the determined optimal parameter values was shown to succesfully equilibrate the model biases among the individual streets and species. It was as well shown that the frequentist approach applied for the uncertainty calculations underestimated the parameter uncertainties. The model parameter uncertainty was qualitatively assessed to be significant, and reduction strategies were identified.
Resumo:
Economic losses resulting from disease development can be reduced by accurate and early detection of plant pathogens. Early detection can provide the grower with useful information on optimal crop rotation patterns, varietal selections, appropriate control measures, harvest date and post harvest handling. Classical methods for the isolation of pathogens are commonly used only after disease symptoms. This frequently results in a delay in application of control measures at potentially important periods in crop production. This paper describes the application of both antibody and DNA based systems to monitor infection risk of air and soil borne fungal pathogens and the use of this information with mathematical models describing risk of disease associated with environmental parameters.
Resumo:
Background: Patients with chronic obstructive pulmonary disease (COPD) can have recurrent disease exacerbations triggered by several factors, including air pollution. Visits to the emergency respiratory department can be a direct result of short-term exposure to air pollution. The aim of this study was to investigate the relationship between the daily number of COPD emergency department visits and the daily environmental air concentrations of PM(10), SO(2), NO(2), CO and O(3) in the City of Sao Paulo, Brazil. Methods: The sample data were collected between 2001 and 2003 and are categorised by gender and age. Generalised linear Poisson regression models were adopted to control for both short-and long-term seasonal changes as well as for temperature and relative humidity. The non-linear dependencies were controlled using a natural cubic spline function. Third-degree polynomial distributed lag models were adopted to estimate both lag structures and the cumulative effects of air pollutants. Results: PM(10) and SO(2) readings showed both acute and lagged effects on COPD emergency department visits. Interquartile range increases in their concentration (28.3 mg/m(3) and 7.8 mg/m(3), respectively) were associated with a cumulative 6-day increase of 19% and 16% in COPD admissions, respectively. An effect on women was observed at lag 0, and among the elderly the lag period was noted to be longer. Increases in CO concentration showed impacts in the female and elderly groups. NO(2) and O(3) presented mild effects on the elderly and in women, respectively. Conclusion: These results indicate that air pollution affects health in a gender-and age-specific manner and should be considered a relevant risk factor that exacerbates COPD in urban environments.
Resumo:
Background This study aimed to evaluate the association between the total suspended particles (TSP) generated from burning sugar cane plantations and the incidence of hospital admissions from hypertension in the city of Araraquara. Methods The study was an ecological time-series study. Total daily records of hypertension (ICD 10th I10-15) were obtained from admitted patients of all ages in a hospital in Araraquara, Sao Paulo State, Brazil, from 23 March 2003 to 27 July 2004. The daily concentration of TSP (mu g/m(3)) was obtained using a Handi-Vol sampler placed in downtown Araraquara. The local airport provided daily measures of temperature and humidity. In generalised linear Poisson regression models, the daily number of hospital admissions for hypertension was considered to be the dependent variable and the daily TSP concentration the independent variable. Results TSP presented a lagged effect on hypertension admissions, which was first observed 1 day after a TSP increase and remained almost unchanged for the following 2 days. A 10 mu g/m(3) increase in the TSP 3 day moving average lagged in 1 day led to an increase in hypertension-related hospital admissions during the harvest period (12.5%, 95% CI 5.6% to 19.9%) that was almost 30% higher than during non-harvest periods (9.0%, 95% CI 4.0% to 14.3%). Conclusions Increases in TSP concentrations were associated with hypertension-related hospital admissions. Despite the benefits of reduced air pollution in urban cities achieved by using ethanol produced from sugar cane to power automobiles, areas where the sugar cane is produced and harvested were found to have increased public health risk.
Resumo:
Objectives: Air-pollution exposure has been associated with increased cardiovascular hospital admissions and mortality in time-series studies. We evaluated the relation between air pollutants and emergency room (ER) visits because of cardiac arrhythmia in a cardiology hospital. Methods: In a time-series study, we evaluated the association between the emergency room visits as a result of cardiac arrhythmia and daily variations in SO2, CO, NO2, O-3 and PM10, from January 1998 to August 1999. The cases of arrhythmia were modelled using generalised linear Poisson regression models, controlling for seasonality (short-term and long-term trend), and weather. Results: Interquartile range increases in CO (1.5 ppm), NO2 (49,5 mu g/m(3)) and PM10 (22.2 mu g/m(3)) on the concurrent day were associated with increases of 12.3% (95% CI: 7.6% to 17.2%), 10.4% (95% CI: 5.2% to 15.9%) and 6.7% (95% CI: 1.2% to 12.4%) in arrhythmia ER visits, respectively. PM10, CO and NO2 effects were dose-dependent and gaseous pollutants had thresholds. Only CO effect resisted estimates in models with more than one pollutant. Conclusions: Our results showed that air pollutant effects on arrhythmia are predominantly acute starting at concentrations below air quality standards, and the association with CO and NO2 suggests a relevant role for pollution caused by cars.
Resumo:
This study aims to evaluate the feasibility of using simple techniques - pollen abortion rates, passive diffusive tubes (NO(2)) and trace element accumulation in tree barks - when determining the area of influence of pollution emissions produced in a traffic corridor. Measurements were performed at 0, 60 and 120 meters from a major road with high vehicular traffic, taking advantage of a sharp gradient that exists between the road and a cemetery. NO(2) values and trace elements measured at 0 meters were significantly higher than those measured at more distant points. Al, S. Cl, V. Fe, Cu, and Zn exhibited a higher concentration in tree barks at the vicinity of the traffic corridor. The same pattern was observed for the pollen abortion rates measured at the three different sites. Our data suggests that simple techniques may be applied either to validate dispersion land-based models in an urban settings or, alternatively, to provide better spatial resolution to air pollution exposure when high-resolution pollution monitoring data are not available. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Urban air pollutants are associated with cardiovascular events. Traffic controllers are at high risk for pollution exposure during outdoor work shifts. Objective: The purpose of this study was to evaluate the relationship between air pollution and systemic blood pressure in traffic controllers during their work shifts. Methods: This cross-sectional study enrolled 19 male traffic controllers from Santo Andre city (Sao Paulo, Brazil) who were 30-60 years old and exposed to ambient air during outdoor work shifts. Systolic and diastolic blood pressure readings were measured every 15 min by an Ambulatory Arterial Blood Pressure Monitoring device. Hourly measurements (lags of 0-5 h) and the moving averages (2-5 h) of particulate matter (PM(10)), ozone (O(3)) ambient concentrations and the acquired daily minimum temperature and humidity means from the Sao Paulo State Environmental Agency were correlated with both systolic and diastolic blood pressures. Statistical methods included descriptive analysis and linear mixed effect models adjusted for temperature, humidity, work periods and time of day. Results: Interquartile increases of PM(10) (33 mu g/m(3)) and O(3) (49 mu g/m(3)) levels were associated with increases in all arterial pressure parameters, ranging from 1.06 to 2.53 mmHg. PM(10) concentration was associated with early effects (lag 0), mainly on systolic blood pressure. However, O(3) was weakly associated most consistently with diastolic blood pressure and with late cumulative effects. Conclusions: Santo Andre traffic controllers presented higher blood pressure readings while working their outdoor shifts during periods of exposure to ambient pollutant fluctuations. However, PM(10) and O(3) induced cardiovascular effects demonstrated different time courses and end-point behaviors and probably acted through different mechanisms. (C) 2011 Elsevier Inc. All rights reserved.