831 resultados para Adelaide Island
Resumo:
Mineralogical and granulometric properties of glacial-marine surface sediments of the Weddell Sea and adjoining areas were studied in order to decipher spatial variations of provenance and transport paths of terrigenous detritus from Antarctic sources. The silt fraction shows marked spatial differences in quartz contents. In the sand fractions heavy-mineral assemblages display low mineralogical maturity and are dominated by garnet, green hornblende, and various types of clinopyroxene. Cluster analysis yields distinct heavy-mineral assemblages, which can be attributed to specific source rocks of the Antarctic hinterland. The configuration of modern mineralogical provinces in the near-shore regions reflects the geological variety of the adjacent hinterland. In the distal parts of the study area, sand-sized heavy minerals are good tracers of ice-rafting. Granulometric characteristics and the distribution of heavy-mineral provinces reflect maxima of relative and absolute accumulation of ice-rafted detritus in accordance with major iceberg drift tracks in the course of the Weddell Gyre. Fine-grained and coarse-grained sediment fractions may have different origins. In the central Weddell Sea, coarse ice-rafted detritus basically derives from East Antarctic sources, while the fine-fraction is discharged from weak permanent bottom currents and/or episodic turbidity currents and shows affinities to southern Weddell Sea sources. Winnowing of quartz-rich sediments through intense bottom water formation in the southern Weddell Sea provides muddy suspensions enriched in quartz. The influence of quartz-rich suspensions moving within the Weddell Gyre contour current can be traced as far as the continental slope in the northwestern Weddell Sea. In general, the focusing of mud by currents significantly exceeds the relative and absolute contribution of ice-rafted detritus beyond the shelves of the study area.
Resumo:
The quantitative diatom analysis of 218 surface sediment samples recovered in the Atlantic and western Indian sector of the Southern Ocean is used to define a base of reference data for paleotemperature estimations from diatom assemblages using the Imbrie and Kipp transfer function method. The criteria which justify the exclusion of samples and species out of the raw data set in order to define a reference database are outlined and discussed. Sensitivity tests with eight data sets were achieved evaluating the effects of overall dominance of single species, different methods of species abundance ranking, and no-analog conditions (e.g., Eucampia Antarctica) on the estimated paleotemperatures. The defined transfer functions were applied on a sediment core from the northern Antarctic zone. Overall dominance of Fragilariopsis kerguelensis in the diatom assemblages resulted in a close affinity between paleotemperature curve and relative abundance pattern of this species downcore. Logarithmic conversion of counting data applied with other ranking methods in order to compensate the dominance of F. kerguelensis revealed the best statistical results. A reliable diatom transfer function for future paleotemperature estimations is presented.