924 resultados para Active Learning
Resumo:
Dissertação para obtenção do Grau de Doutor em Ciências da Educação
Resumo:
Locating new wind farms is of crucial importance for energy policies of the next decade. To select the new location, an accurate picture of the wind fields is necessary. However, characterizing wind fields is a difficult task, since the phenomenon is highly nonlinear and related to complex topographical features. In this paper, we propose both a nonparametric model to estimate wind speed at different time instants and a procedure to discover underrepresented topographic conditions, where new measuring stations could be added. Compared to space filling techniques, this last approach privileges optimization of the output space, thus locating new potential measuring sites through the uncertainty of the model itself.
Resumo:
Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset. Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin, and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification. Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.
Resumo:
An active learning method is proposed for the semi-automatic selection of training sets in remote sensing image classification. The method adds iteratively to the current training set the unlabeled pixels for which the prediction of an ensemble of classifiers based on bagged training sets show maximum entropy. This way, the algorithm selects the pixels that are the most uncertain and that will improve the model if added in the training set. The user is asked to label such pixels at each iteration. Experiments using support vector machines (SVM) on an 8 classes QuickBird image show the excellent performances of the methods, that equals accuracies of both a model trained with ten times more pixels and a model whose training set has been built using a state-of-the-art SVM specific active learning method
Resumo:
This workshop paper states that fostering active student participation both in face-to-face lectures / seminars and outside the classroom (personal and group study at home, the library, etc.) requires a certain level of teacher-led inquiry. The paper presents a set of strategies drawn from real practice in higher education with teacher-led inquiry ingredients that promote active learning. Thesepractices highlight the role of the syllabus, the importance of iterative learning designs, explicit teacher-led inquiry, and the implications of the context, sustainability and practitioners’ creativity. The strategies discussed in this paper can serve as input to the workshop as real cases that need to be represented in design and supported in enactment (with and without technologies).
Resumo:
In this paper, we propose two active learning algorithms for semiautomatic definition of training samples in remote sensing image classification. Based on predefined heuristics, the classifier ranks the unlabeled pixels and automatically chooses those that are considered the most valuable for its improvement. Once the pixels have been selected, the analyst labels them manually and the process is iterated. Starting with a small and nonoptimal training set, the model itself builds the optimal set of samples which minimizes the classification error. We have applied the proposed algorithms to a variety of remote sensing data, including very high resolution and hyperspectral images, using support vector machines. Experimental results confirm the consistency of the methods. The required number of training samples can be reduced to 10% using the methods proposed, reaching the same level of accuracy as larger data sets. A comparison with a state-of-the-art active learning method, margin sampling, is provided, highlighting advantages of the methods proposed. The effect of spatial resolution and separability of the classes on the quality of the selection of pixels is also discussed.
Resumo:
In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.
Resumo:
This study evaluates the use of role-playing games (RPGs) as a methodological approach for teaching cellular biology, assessing student satisfaction, learning outcomes, and retention of acquired knowledge. First-year undergraduate medical students at two Brazilian public universities attended either an RPG-based class (RPG group) or a lecture (lecture-based group) on topics related to cellular biology. Pre- and post-RPG-based class questionnaires were compared to scores in regular exams and in an unannounced test one year later to assess students' attitudes and learning. From the 230 students that attended the RPG classes, 78.4% responded that the RPG-based classes were an effective tool for learning; 55.4% thought that such classes were better than lectures but did not replace them; and 81% responded that they would use this method. The lecture-based group achieved a higher grade in 1 of 14 regular exam questions. In the medium-term evaluation (one year later), the RPG group scored higher in 2 of 12 questions. RPG classes are thus quantitatively as effective as formal lectures, are well accepted by students, and may serve as educational tools, giving students the chance to learn actively and potentially retain the acquired knowledge more efficiently.