996 resultados para Action rules


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Free independent travelers require flexible, reactive service delivery due to their regularly changing location and activities and the lack of a wired Internet connection. A ubiquitous travel service delivery system that is able to dynamically deliver services in response to relevant events, such as changing location, availability of new last-minute specials, work opportunities, and safety issues can provide added value while retaining the flexibility that is so important to independent travelers. This article describes such a system. An engineering design research approach has been adopted to design the system. Issues addressed include traveler and service states and events, contexts, situations, and situation-action rules. An architecture is proposed that is based on distributed, cooperating software agents and mobile data technologies. The role of these agents is to continuously monitor situations that are occurring in the physical and virtual service spaces and to take the required action for any situations that are relevant to the traveler.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hybrid knowledge bases are knowledge bases that combine ontologies with non-monotonic rules, allowing to join the best of both open world ontologies and close world rules. Ontologies shape a good mechanism to share knowledge on theWeb that can be understood by both humans and machines, on the other hand rules can be used, e.g., to encode legal laws or to do a mapping between sources of information. Taking into account the dynamics present today on the Web, it is important for these hybrid knowledge bases to capture all these dynamics and thus adapt themselves. To achieve that, it is necessary to create mechanisms capable of monitoring the information flow present on theWeb. Up to today, there are no such mechanisms that allow for monitoring events and performing modifications of hybrid knowledge bases autonomously. The goal of this thesis is then to create a system that combine these hybrid knowledge bases with reactive rules, aiming to monitor events and perform actions over a knowledge base. To achieve this goal, a reactive system for the SemanticWeb is be developed in a logic-programming based approach accompanied with a language for heterogeneous rule base evolution having as its basis RIF Production Rule Dialect, which is a standard for exchanging rules over theWeb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a result of urbanization, stormwater runoff flow rates and volumes are significantly increased due to increasing impervious land cover and the decreased availability of depression storage. Storage tanks are the basic devices to efficiently control the flow rate in drainage systems during wet weather. Presented in the paper conception of vacuum-driven detention tanks allows to increase the storage capacity by usage of space above the free surface water elevation at the inlet channel. Partial vacuum storage makes possible to gain cost savings by reduction of both the horizontal area of the detention tank and necessary depth of foundations. Simulation model of vacuum-driven storage tank has been developed to estimate potential profits of its application in urban drainage system. Although SWMM5 has no direct options for vacuum tanks an existing functions (i.e. control rules) have been used to reflect its operation phases. Rainfall data used in simulations were recorded at raingage in Czestochowa during years 2010÷2012 with time interval of 10minutes. Simulation results gives overview to practical operation and maintenance cost (energy demand) of vacuum driven storage tanks depending of the ratio: vacuum-driven volume to total storage capacity. The following conclusion can be drawn from this investigations: vacuum-driven storage tanks are characterized by uncomplicated construction and control systems, thus can be applied in newly developed as well as in the existing urban drainage systems. the application of vacuum in underground detention facilities makes possible to increase of the storage capacity of existing reservoirs by usage the space above the maximum depth. Possible increase of storage capacity can achieve even a few dozen percent at relatively low investment costs. vacuum driven storage tanks can be included in existing simulation software (i.e. SWMM) using options intended for pumping stations (including control and action rules ).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an approach to integrate an artificial intelligence (AI) technique, concretely rule-based processing, into mobile agents. In particular, it focuses on the aspects of designing and implementing an appropriate inference engine of small size to reduce migration costs. The main goal is combine two lines of agent research, First, the engineering oriented approach on mobile agent architectures, and, second, the AI related approach on inference engines driven by rules expressed in a restricted subset of first-order predicate logic (FOPL). In addition to size reduction, the main functions of this type of engine were isolated, generalized and implemented as dynamic components, making possible not only their migration with the agent, but also their dynamic migration and loading on demand. A set of classes for representing and exchanging knowledge between rule-based systems was also proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Population coding is widely regarded as a key mechanism for achieving reliable behavioral decisions. We previously introduced reinforcement learning for population-based decision making by spiking neurons. Here we generalize population reinforcement learning to spike-based plasticity rules that take account of the postsynaptic neural code. We consider spike/no-spike, spike count and spike latency codes. The multi-valued and continuous-valued features in the postsynaptic code allow for a generalization of binary decision making to multi-valued decision making and continuous-valued action selection. We show that code-specific learning rules speed up learning both for the discrete classification and the continuous regression tasks. The suggested learning rules also speed up with increasing population size as opposed to standard reinforcement learning rules. Continuous action selection is further shown to explain realistic learning speeds in the Morris water maze. Finally, we introduce the concept of action perturbation as opposed to the classical weight- or node-perturbation as an exploration mechanism underlying reinforcement learning. Exploration in the action space greatly increases the speed of learning as compared to exploration in the neuron or weight space.